banner
fwrite

fwrite

好好生活
twitter
github
email

AudioRecord

AudioRecord#

初始化#

public AudioRecord(int audioSource, int sampleRateInHz, int channelConfig, int audioFormat,int bufferSizeInBytes)

关于采样率,除了 44100Hz 所有设备上都保证支持,其他频率就不一定支持了,这时候可以通过使用参数 SAMPLE_RATE_UNSPECIFIED,让设备自己去决策使用的采样率。 channelConfig 是采样通道,当前所有设备都保证支持单声道,多声道就不一定支持了。 bufferSizeInBytes 是 buffer 大小,用来存采集的数据,一般是直接用接口 getMinBufferSize 的返回值作为 buffer 大小。

getMinBufferSize#

//frameworks/base/media/java/android/media/AudioRecord.java    
static public int getMinBufferSize(int sampleRateInHz, int channelConfig, int audioFormat) {
        int channelCount = 0;
        switch (channelConfig) {
        case AudioFormat.CHANNEL_IN_DEFAULT: // AudioFormat.CHANNEL_CONFIGURATION_DEFAULT
        case AudioFormat.CHANNEL_IN_MONO:
        case AudioFormat.CHANNEL_CONFIGURATION_MONO:
            channelCount = 1;
            break;
        case AudioFormat.CHANNEL_IN_STEREO:
        case AudioFormat.CHANNEL_CONFIGURATION_STEREO:
        case (AudioFormat.CHANNEL_IN_FRONT | AudioFormat.CHANNEL_IN_BACK):
            channelCount = 2;
            break;
        case AudioFormat.CHANNEL_INVALID:
        default:
            loge("getMinBufferSize(): Invalid channel configuration.");
            return ERROR_BAD_VALUE;
        }

        int size = native_get_min_buff_size(sampleRateInHz, channelCount, audioFormat);
        if (size == 0) {
            return ERROR_BAD_VALUE;
        }
        else if (size == -1) {
            return ERROR;
        }
        else {
            return size;
        }
   }
//frameworks/base/core/jni/android_media_AudioRecord.cpp
static jint android_media_AudioRecord_get_min_buff_size(JNIEnv *env,  jobject thiz,
    jint sampleRateInHertz, jint channelCount, jint audioFormat) {

    ALOGV(">> android_media_AudioRecord_get_min_buff_size(%d, %d, %d)",
          sampleRateInHertz, channelCount, audioFormat);

    size_t frameCount = 0;
    audio_format_t format = audioFormatToNative(audioFormat); // 把java 的格式转成native的
    status_t result = AudioRecord::getMinFrameCount(&frameCount, // 获取最小帧数
            sampleRateInHertz,
            format,
            audio_channel_in_mask_from_count(channelCount));

    if (result == BAD_VALUE) {
        return 0;
    }
    if (result != NO_ERROR) {
        return -1;
    }
    return frameCount * audio_bytes_per_frame(channelCount, format);
}
//frameworks/av/media/libaudioclient/AudioRecord.cpp
status_t AudioRecord::getMinFrameCount(
        size_t* frameCount,
        uint32_t sampleRate,
        audio_format_t format,
        audio_channel_mask_t channelMask)
{
    if (frameCount == NULL) {
        return BAD_VALUE;
    }

    size_t size;
    status_t status = AudioSystem::getInputBufferSize(sampleRate, format, channelMask, &size);
    if (status != NO_ERROR) {
        ALOGE("%s(): AudioSystem could not query the input buffer size for"
              " sampleRate %u, format %#x, channelMask %#x; status %d",
               __func__, sampleRate, format, channelMask, status);
        return status;
    }

    // We double the size of input buffer for ping pong use of record buffer.
    const auto frameSize = audio_bytes_per_frame(
            audio_channel_count_from_in_mask(channelMask), format);
    if (frameSize == 0 || ((*frameCount = (size * 2) / frameSize) == 0)) {
        ALOGE("%s(): Unsupported configuration: sampleRate %u, format %#x, channelMask %#x",
                __func__, sampleRate, format, channelMask);
        return BAD_VALUE;
    }

    return NO_ERROR;
}
//frameworks/av/media/libaudioclient/AudioSystem.cpp
status_t AudioSystem::getInputBufferSize(uint32_t sampleRate, audio_format_t format,
                                         audio_channel_mask_t channelMask, size_t* buffSize) {
    const sp<AudioFlingerClient> afc = getAudioFlingerClient();
    if (afc == 0) {
        return NO_INIT;
    }
    return afc->getInputBufferSize(sampleRate, format, channelMask, buffSize);
}

status_t AudioSystem::AudioFlingerClient::getInputBufferSize(
        uint32_t sampleRate, audio_format_t format,
        audio_channel_mask_t channelMask, size_t* buffSize) {
    const sp<IAudioFlinger> af = get_audio_flinger();
    if (af == 0) {
        return PERMISSION_DENIED;
    }
    std::lock_guard _l(mMutex);
    // Do we have a stale mInBuffSize or are we requesting the input buffer size for new values
    if ((mInBuffSize == 0) || (sampleRate != mInSamplingRate) || (format != mInFormat)
        || (channelMask != mInChannelMask)) {
        size_t inBuffSize = af->getInputBufferSize(sampleRate, format, channelMask);
        if (inBuffSize == 0) {
            ALOGE("AudioSystem::getInputBufferSize failed sampleRate %d format %#x channelMask %#x",
                  sampleRate, format, channelMask);
            return BAD_VALUE;
        }
        // A benign race is possible here: we could overwrite a fresher cache entry
        // save the request params
        mInSamplingRate = sampleRate;
        mInFormat = format;
        mInChannelMask = channelMask;

        mInBuffSize = inBuffSize;
    }

    *buffSize = mInBuffSize;

    return NO_ERROR;
}

//frameworks/av/services/audioflinger/AudioFlinger.cpp
size_t AudioFlinger::getInputBufferSize(uint32_t sampleRate, audio_format_t format,
        audio_channel_mask_t channelMask) const
{
    status_t ret = initCheck();
    if (ret != NO_ERROR) {
        return 0;
    }
    if ((sampleRate == 0) ||
            !audio_is_valid_format(format) ||
            !audio_is_input_channel(channelMask)) {
        return 0;
    }

    audio_utils::lock_guard lock(hardwareMutex());
    if (mPrimaryHardwareDev == nullptr) {
        return 0;
    }
    if (mInputBufferSizeOrderedDevs.empty()) {
        return 0;
    }
    mHardwareStatus = AUDIO_HW_GET_INPUT_BUFFER_SIZE;

    std::vector<audio_channel_mask_t> channelMasks = {channelMask};
    if (channelMask != AUDIO_CHANNEL_IN_MONO) {
        channelMasks.push_back(AUDIO_CHANNEL_IN_MONO);
    }
    if (channelMask != AUDIO_CHANNEL_IN_STEREO) {
        channelMasks.push_back(AUDIO_CHANNEL_IN_STEREO);
    }

    std::vector<audio_format_t> formats = {format};
    if (format != AUDIO_FORMAT_PCM_16_BIT) {
        // For compressed format, buffer size may be queried using PCM. Allow this for compatibility
        // in cases the primary hw dev does not support the format.
        // TODO: replace with a table of formats and nominal buffer sizes (based on nominal bitrate
        // and codec frame size).
        formats.push_back(AUDIO_FORMAT_PCM_16_BIT);
    }

    std::vector<uint32_t> sampleRates = {sampleRate};
    static const uint32_t SR_44100 = 44100;
    static const uint32_t SR_48000 = 48000;
    if (sampleRate != SR_48000) {
        sampleRates.push_back(SR_48000);
    }
    if (sampleRate != SR_44100) {
        sampleRates.push_back(SR_44100);
    }

    mHardwareStatus = AUDIO_HW_IDLE;

    auto getInputBufferSize = [](const sp<DeviceHalInterface>& dev, audio_config_t config,
                                 size_t* bytes) -> status_t {
        if (!dev) {
            return BAD_VALUE;
        }
        status_t result = dev->getInputBufferSize(&config, bytes);
        if (result == BAD_VALUE) {
            // Retry with the config suggested by the HAL.
            result = dev->getInputBufferSize(&config, bytes);
        }
        if (result != OK || *bytes == 0) {
            return BAD_VALUE;
        }
        return result;
    };

    // Change parameters of the configuration each iteration until we find a
    // configuration that the device will support, or HAL suggests what it supports.
    audio_config_t config = AUDIO_CONFIG_INITIALIZER;
    for (auto testChannelMask : channelMasks) {
        config.channel_mask = testChannelMask;
        for (auto testFormat : formats) {
            config.format = testFormat;
            for (auto testSampleRate : sampleRates) {
                config.sample_rate = testSampleRate;

                size_t bytes = 0;
                ret = BAD_VALUE;
                for (const AudioHwDevice* dev : mInputBufferSizeOrderedDevs) {
                    ret = getInputBufferSize(dev->hwDevice(), config, &bytes);
                    if (ret == OK) {
                        break;
                    }
                }
                if (ret == BAD_VALUE) continue;

                if (config.sample_rate != sampleRate || config.channel_mask != channelMask ||
                    config.format != format) {
                    uint32_t dstChannelCount = audio_channel_count_from_in_mask(channelMask);
                    uint32_t srcChannelCount =
                        audio_channel_count_from_in_mask(config.channel_mask);
                    size_t srcFrames =
                        bytes / audio_bytes_per_frame(srcChannelCount, config.format);
                    size_t dstFrames = destinationFramesPossible(
                        srcFrames, config.sample_rate, sampleRate);
                    bytes = dstFrames * audio_bytes_per_frame(dstChannelCount, format);
                }
                return bytes;
            }
        }
    }

    ALOGW("getInputBufferSize failed with minimum buffer size sampleRate %u, "
              "format %#x, channelMask %#x",sampleRate, format, channelMask);
    return 0;
}

AudioRecord 初始化#

//frameworks/base/media/java/android/media/AudioRecord.java 
private AudioRecord(AudioAttributes attributes, AudioFormat format, int bufferSizeInBytes,
            int sessionId, @Nullable Context context,
            int maxSharedAudioHistoryMs, int halInputFlags) throws IllegalArgumentException {
        mRecordingState = RECORDSTATE_STOPPED;
        mHalInputFlags = halInputFlags;
        if (attributes == null) {
            throw new IllegalArgumentException("Illegal null AudioAttributes");
        }
        if (format == null) {
            throw new IllegalArgumentException("Illegal null AudioFormat");
        }

        // remember which looper is associated with the AudioRecord instanciation
        if ((mInitializationLooper = Looper.myLooper()) == null) {
            mInitializationLooper = Looper.getMainLooper();
        }

        // is this AudioRecord using REMOTE_SUBMIX at full volume?
        if (attributes.getCapturePreset() == MediaRecorder.AudioSource.REMOTE_SUBMIX) {
            final AudioAttributes.Builder ab =
                    new AudioAttributes.Builder(attributes);
            HashSet<String> filteredTags = new HashSet<String>();
            final Iterator<String> tagsIter = attributes.getTags().iterator();
            while (tagsIter.hasNext()) {
                final String tag = tagsIter.next();
                if (tag.equalsIgnoreCase(SUBMIX_FIXED_VOLUME)) {
                    mIsSubmixFullVolume = true;
                    Log.v(TAG, "Will record from REMOTE_SUBMIX at full fixed volume");
                } else { // SUBMIX_FIXED_VOLUME: is not to be propagated to the native layers
                    filteredTags.add(tag);
                }
            }
            ab.replaceTags(filteredTags);
            attributes = ab.build();
        }

        mAudioAttributes = attributes;

        int rate = format.getSampleRate();
        if (rate == AudioFormat.SAMPLE_RATE_UNSPECIFIED) {
            rate = 0;
        }

        int encoding = AudioFormat.ENCODING_DEFAULT;
        if ((format.getPropertySetMask() & AudioFormat.AUDIO_FORMAT_HAS_PROPERTY_ENCODING) != 0)
        {
            encoding = format.getEncoding();
        }

        audioParamCheck(mAudioAttributes.getCapturePreset(), rate, encoding);

        if ((format.getPropertySetMask()
                & AudioFormat.AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_INDEX_MASK) != 0) {
            mChannelIndexMask = format.getChannelIndexMask();
            mChannelCount = format.getChannelCount();
        }
        if ((format.getPropertySetMask()
                & AudioFormat.AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK) != 0) {
            mChannelMask = getChannelMaskFromLegacyConfig(format.getChannelMask(), false);
            mChannelCount = format.getChannelCount();
        } else if (mChannelIndexMask == 0) {
            mChannelMask = getChannelMaskFromLegacyConfig(AudioFormat.CHANNEL_IN_DEFAULT, false);
            mChannelCount =  AudioFormat.channelCountFromInChannelMask(mChannelMask);
        }

        audioBuffSizeCheck(bufferSizeInBytes);

        AttributionSource attributionSource = (context != null)
                ? context.getAttributionSource() : AttributionSource.myAttributionSource();
        if (attributionSource.getPackageName() == null) {
            // Command line utility
            attributionSource = attributionSource.withPackageName("uid:" + Binder.getCallingUid());
        }

        int[] sampleRate = new int[] {mSampleRate};
        int[] session = new int[1];
        session[0] = resolveSessionId(context, sessionId);

        //TODO: update native initialization when information about hardware init failure
        //      due to capture device already open is available.
        try (ScopedParcelState attributionSourceState = attributionSource.asScopedParcelState()) {
            int initResult = native_setup(new WeakReference<AudioRecord>(this), mAudioAttributes,
                    sampleRate, mChannelMask, mChannelIndexMask, mAudioFormat,
                    mNativeBufferSizeInBytes, session, attributionSourceState.getParcel(),
                    0 /*nativeRecordInJavaObj*/, maxSharedAudioHistoryMs, mHalInputFlags);
            if (initResult != SUCCESS) {
                loge("Error code " + initResult + " when initializing native AudioRecord object.");
                return; // with mState == STATE_UNINITIALIZED
            }
        }

        mSampleRate = sampleRate[0];
        mSessionId = session[0];

        mState = STATE_INITIALIZED;
    }
//frameworks/base/core/jni/android_media_AudioRecord.cpp
static jint android_media_AudioRecord_setup(JNIEnv *env, jobject thiz, jobject weak_this,
                                            jobject jaa, jintArray jSampleRate, jint channelMask,
                                            jint channelIndexMask, jint audioFormat,
                                            jint buffSizeInBytes, jintArray jSession,
                                            jobject jAttributionSource, jlong nativeRecordInJavaObj,
                                            jint sharedAudioHistoryMs,
                                            jint halFlags) {
    //ALOGV(">> Entering android_media_AudioRecord_setup");
    //ALOGV("sampleRate=%d, audioFormat=%d, channel mask=%x, buffSizeInBytes=%d "
    //     "nativeRecordInJavaObj=0x%llX",
    //     sampleRateInHertz, audioFormat, channelMask, buffSizeInBytes, nativeRecordInJavaObj);
    audio_channel_mask_t localChanMask = inChannelMaskToNative(channelMask);

    if (jSession == NULL) {
        ALOGE("Error creating AudioRecord: invalid session ID pointer");
        return (jint) AUDIO_JAVA_ERROR;
    }

    jint* nSession = env->GetIntArrayElements(jSession, nullptr /* isCopy */);
    if (nSession == NULL) {
        ALOGE("Error creating AudioRecord: Error retrieving session id pointer");
        return (jint) AUDIO_JAVA_ERROR;
    }
    audio_session_t sessionId = (audio_session_t) nSession[0];
    env->ReleaseIntArrayElements(jSession, nSession, 0 /* mode */);
    nSession = NULL;

    sp<AudioRecord> lpRecorder;
    sp<AudioRecordJNIStorage> callbackData;
    jclass clazz = env->GetObjectClass(thiz);
    if (clazz == NULL) {
        ALOGE("Can't find %s when setting up callback.", kClassPathName);
        return (jint) AUDIORECORD_ERROR_SETUP_NATIVEINITFAILED;
    }

    // if we pass in an existing *Native* AudioRecord, we don't need to create/initialize one.
    if (nativeRecordInJavaObj == 0) { // native的audio record还没创建,那么就需要创建
        if (jaa == 0) {
            ALOGE("Error creating AudioRecord: invalid audio attributes");
            return (jint) AUDIO_JAVA_ERROR;
        }

        if (jSampleRate == 0) {
            ALOGE("Error creating AudioRecord: invalid sample rates");
            return (jint) AUDIO_JAVA_ERROR;
        }
        jint elements[1];
        env->GetIntArrayRegion(jSampleRate, 0, 1, elements);
        int sampleRateInHertz = elements[0];

        // channel index mask takes priority over channel position masks.
        if (channelIndexMask) {
            // Java channel index masks need the representation bits set.
            localChanMask = audio_channel_mask_from_representation_and_bits(
                    AUDIO_CHANNEL_REPRESENTATION_INDEX,
                    channelIndexMask);
        }
        // Java channel position masks map directly to the native definition

        if (!audio_is_input_channel(localChanMask)) {
            ALOGE("Error creating AudioRecord: channel mask %#x is not valid.", localChanMask);
            return (jint) AUDIORECORD_ERROR_SETUP_INVALIDCHANNELMASK;
        }
        uint32_t channelCount = audio_channel_count_from_in_mask(localChanMask);

        // compare the format against the Java constants
        audio_format_t format = audioFormatToNative(audioFormat);
        if (format == AUDIO_FORMAT_INVALID) {
            ALOGE("Error creating AudioRecord: unsupported audio format %d.", audioFormat);
            return (jint) AUDIORECORD_ERROR_SETUP_INVALIDFORMAT;
        }

        if (buffSizeInBytes == 0) {
            ALOGE("Error creating AudioRecord: frameCount is 0.");
            return (jint) AUDIORECORD_ERROR_SETUP_ZEROFRAMECOUNT;
        }
        size_t frameCount = buffSizeInBytes / audio_bytes_per_frame(channelCount, format);

        // create an uninitialized AudioRecord object
        Parcel* parcel = parcelForJavaObject(env, jAttributionSource);
        android::content::AttributionSourceState attributionSource;
        attributionSource.readFromParcel(parcel);

        lpRecorder = new AudioRecord(attributionSource);

        // read the AudioAttributes values
        auto paa = JNIAudioAttributeHelper::makeUnique();
        jint jStatus = JNIAudioAttributeHelper::nativeFromJava(env, jaa, paa.get());
        if (jStatus != (jint)AUDIO_JAVA_SUCCESS) {
            return jStatus;
        }
        ALOGV("AudioRecord_setup for source=%d tags=%s flags=%08x", paa->source, paa->tags, paa->flags);

        const auto flags = static_cast<audio_input_flags_t>(halFlags);
        // create the callback information:
        // this data will be passed with every AudioRecord callback
        // we use a weak reference so the AudioRecord object can be garbage collected.
        callbackData = sp<AudioRecordJNIStorage>::make(clazz, weak_this);

        const status_t status =
                lpRecorder->set(paa->source, sampleRateInHertz, // set 配置
                                format, // word length, PCM
                                localChanMask, frameCount,
                                callbackData,   // callback
                                0,                // notificationFrames,
                                true,             // threadCanCallJava
                                sessionId, AudioRecord::TRANSFER_DEFAULT, flags, -1,
                                -1, // default uid, pid
                                paa.get(), AUDIO_PORT_HANDLE_NONE, MIC_DIRECTION_UNSPECIFIED,
                                MIC_FIELD_DIMENSION_DEFAULT, sharedAudioHistoryMs);

        if (status != NO_ERROR) {
            ALOGE("Error creating AudioRecord instance: initialization check failed with status %d.",
                    status);
            goto native_init_failure;
        }
        // Set caller name so it can be logged in destructor.
        // MediaMetricsConstants.h: AMEDIAMETRICS_PROP_CALLERNAME_VALUE_JAVA
        lpRecorder->setCallerName("java");
    } else { // end if nativeRecordInJavaObj == 0) // 已经创建了native的AudioRecord
        lpRecorder = (AudioRecord*)nativeRecordInJavaObj;
        // TODO: We need to find out which members of the Java AudioRecord might need to be
        // initialized from the Native AudioRecord
        // these are directly returned from getters:
        //  mSampleRate
        //  mRecordSource
        //  mAudioFormat
        //  mChannelMask
        //  mChannelCount
        //  mState (?)
        //  mRecordingState (?)
        //  mPreferredDevice

        // create the callback information:
        // this data will be passed with every AudioRecord callback
        // This next line makes little sense
        // callbackData = sp<AudioRecordJNIStorage>::make(clazz, weak_this);
    }

    nSession = env->GetIntArrayElements(jSession, nullptr /* isCopy */);
    if (nSession == NULL) {
        ALOGE("Error creating AudioRecord: Error retrieving session id pointer");
        goto native_init_failure;
    }
    // read the audio session ID back from AudioRecord in case a new session was created during set()
    nSession[0] = lpRecorder->getSessionId();
    env->ReleaseIntArrayElements(jSession, nSession, 0 /* mode */);
    nSession = NULL;

    {
        const jint elements[1] = { (jint) lpRecorder->getSampleRate() };
        env->SetIntArrayRegion(jSampleRate, 0, 1, elements);
    }

    // save our newly created C++ AudioRecord in the "nativeRecorderInJavaObj" field
    // of the Java object
    // 关联Java对象
    setFieldSp(env, thiz, lpRecorder, javaAudioRecordFields.nativeRecorderInJavaObj);

    // save our newly created callback information in the "jniData" field
    // of the Java object (in mNativeJNIDataHandle) so we can free the memory in finalize()
    setFieldSp(env, thiz, callbackData, javaAudioRecordFields.jniData);

    return (jint) AUDIO_JAVA_SUCCESS;

    // failure:
native_init_failure:
    setFieldSp(env, thiz, sp<AudioRecord>{}, javaAudioRecordFields.nativeRecorderInJavaObj);
    setFieldSp(env, thiz, sp<AudioRecordJNIStorage>{}, javaAudioRecordFields.jniData);

    // lpRecorder goes out of scope, so reference count drops to zero
    return (jint) AUDIORECORD_ERROR_SETUP_NATIVEINITFAILED;
}
//frameworks/av/media/libaudioclient/AudioRecord.cpp
status_t AudioRecord::set(
        audio_source_t inputSource,
        uint32_t sampleRate,
        audio_format_t format,
        audio_channel_mask_t channelMask,
        size_t frameCount,
        const wp<IAudioRecordCallback>& callback,
        uint32_t notificationFrames,
        bool threadCanCallJava,
        audio_session_t sessionId,
        transfer_type transferType,
        audio_input_flags_t flags,
        uid_t uid,
        pid_t pid,
        const audio_attributes_t* pAttributes,
        audio_port_handle_t selectedDeviceId,
        audio_microphone_direction_t selectedMicDirection,
        float microphoneFieldDimension,
        int32_t maxSharedAudioHistoryMs)
{
    status_t status = NO_ERROR;
    LOG_ALWAYS_FATAL_IF(mInitialized, "%s: should not be called twice", __func__);
    mInitialized = true;
    // Note mPortId is not valid until the track is created, so omit mPortId in ALOG for set.
    ALOGV("%s(): inputSource %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
          "notificationFrames %u, sessionId %d, transferType %d, flags %#x, attributionSource %s"
          "uid %d, pid %d",
          __func__,
          inputSource, sampleRate, format, channelMask, frameCount, notificationFrames,
          sessionId, transferType, flags, mClientAttributionSource.toString().c_str(), uid, pid);

    // TODO b/182392553: refactor or remove
    pid_t callingPid = IPCThreadState::self()->getCallingPid();
    pid_t myPid = getpid();
    pid_t adjPid = pid;
    if (pid == -1 || (callingPid != myPid)) {
        adjPid = callingPid;
    }
    auto clientAttributionSourcePid = legacy2aidl_pid_t_int32_t(adjPid);
    if (!clientAttributionSourcePid.ok()) {
        return logIfErrorAndReturnStatus(BAD_VALUE,
                                         StringPrintf("%s: received invalid client attribution "
                                                      "source pid, pid: %d, sessionId: %d",
                                                      __func__, pid, sessionId),
                                         __func__);
    }
    mClientAttributionSource.pid = clientAttributionSourcePid.value();
    uid_t adjUid = uid;
    if (uid == -1 || (callingPid != myPid)) {
        adjUid = IPCThreadState::self()->getCallingUid();
    }
    auto clientAttributionSourceUid = legacy2aidl_uid_t_int32_t(adjUid);
    if (!clientAttributionSourceUid.ok()) {
        return logIfErrorAndReturnStatus(BAD_VALUE,
                                         StringPrintf("%s: received invalid client attribution "
                                                      "source uid, pid: %d, session id: %d",
                                                      __func__, pid, sessionId),
                                         __func__);
    }
    mClientAttributionSource.uid = clientAttributionSourceUid.value();

    mTracker.reset(new RecordingActivityTracker());

    mSelectedDeviceId = selectedDeviceId;
    mSelectedMicDirection = selectedMicDirection;
    mSelectedMicFieldDimension = microphoneFieldDimension;
    mMaxSharedAudioHistoryMs = maxSharedAudioHistoryMs;

    // Copy the state variables early so they are available for error reporting.
    if (pAttributes == nullptr) {
        mAttributes = AUDIO_ATTRIBUTES_INITIALIZER;
        mAttributes.source = inputSource;
        if (inputSource == AUDIO_SOURCE_VOICE_COMMUNICATION
                || inputSource == AUDIO_SOURCE_CAMCORDER) {
            mAttributes.flags = static_cast<audio_flags_mask_t>(
                    mAttributes.flags | AUDIO_FLAG_CAPTURE_PRIVATE);
        }
    } else {
        // stream type shouldn't be looked at, this track has audio attributes
        memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
        ALOGV("%s: Building AudioRecord with attributes: source=%d flags=0x%x tags=[%s]",
                __func__, mAttributes.source, mAttributes.flags, mAttributes.tags);
    }
    mSampleRate = sampleRate;
    if (format == AUDIO_FORMAT_DEFAULT) {
        format = AUDIO_FORMAT_PCM_16_BIT;
    }
    if (!audio_is_linear_pcm(format)) {
       // Compressed capture requires direct
       flags = (audio_input_flags_t) (flags | AUDIO_INPUT_FLAG_DIRECT);
       ALOGI("%s(): Format %#x is not linear pcm. Setting DIRECT, using flags %#x", __func__,
             format, flags);
    }
    mFormat = format;
    mChannelMask = channelMask;
    mSessionId = sessionId;
    ALOGV("%s: mSessionId %d", __func__, mSessionId);
    mOrigFlags = mFlags = flags;

    mTransfer = transferType;
    switch (mTransfer) { // 传入的transfer是default,其余case可以先忽略
    case TRANSFER_DEFAULT: 
        if (callback == nullptr || threadCanCallJava) {
            mTransfer = TRANSFER_SYNC;
        } else {
            mTransfer = TRANSFER_CALLBACK;
        }
        break;
    case TRANSFER_CALLBACK:
        if (callback == nullptr) {
            return logIfErrorAndReturnStatus(
                    BAD_VALUE,
                    StringPrintf("%s: Transfer type TRANSFER_CALLBACK but callback == nullptr, "
                                 "pid: %d, session id: %d",
                                 __func__, pid, sessionId),
                    __func__);
        }
        break;
    case TRANSFER_OBTAIN:
    case TRANSFER_SYNC:
        break;
    default:
        return logIfErrorAndReturnStatus(
                BAD_VALUE,
                StringPrintf("%s: Invalid transfer type %d, pid: %d, session id: %d", __func__,
                             mTransfer, pid, sessionId),
                __func__);
    }

    // invariant that mAudioRecord != 0 is true only after set() returns successfully
    if (mAudioRecord != 0) {
        return logIfErrorAndReturnStatus(
                INVALID_OPERATION,
                StringPrintf("%s: Track already in use, pid: %d, session id: %d", __func__, pid,
                             sessionId),
                __func__);
    }

    if (!audio_is_valid_format(mFormat)) {
        return logIfErrorAndReturnStatus(
                BAD_VALUE,
                StringPrintf("%s: Format %#x is not valid, pid: %d, session id: %d", __func__,
                             mFormat, pid, sessionId),
                __func__);
    }

    if (!audio_is_input_channel(mChannelMask)) {
        return logIfErrorAndReturnStatus(
                BAD_VALUE,
                StringPrintf("%s: Invalid channel mask %#x, pid: %d, session id: %d", __func__,
                             mChannelMask, pid, sessionId),
                __func__);
    }

    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
    mFrameSize = audio_bytes_per_frame(mChannelCount, mFormat);

    // mFrameCount is initialized in createRecord_l
    mReqFrameCount = frameCount;

    mNotificationFramesReq = notificationFrames;
    // mNotificationFramesAct is initialized in createRecord_l

    mCallback = callback;
    if (mCallback != nullptr) {
        mAudioRecordThread = new AudioRecordThread(*this);  // 回调线程,这样采集好数据后,可以主动回调调用方
        mAudioRecordThread->run("AudioRecord", ANDROID_PRIORITY_AUDIO);
        // thread begins in paused state, and will not reference us until start()
    }

    // create the IAudioRecord
    // 关键
    {
        AutoMutex lock(mLock);
        status = createRecord_l(0 /*epoch*/);
    }

    ALOGV("%s(%d): status %d", __func__, mPortId, status);

    if (status != NO_ERROR) {
        if (mAudioRecordThread != 0) {
            mAudioRecordThread->requestExit();   // see comment in AudioRecord.h
            mAudioRecordThread->requestExitAndWait();
            mAudioRecordThread.clear();
        }
        // bypass error message to avoid logging twice (createRecord_l logs the error).
        mStatus = status;
        return mStatus;
    }

    // TODO: add audio hardware input latency here
    mLatency = (1000LL * mFrameCount) / mSampleRate;
    mMarkerPosition = 0;
    mMarkerReached = false;
    mNewPosition = 0;
    mUpdatePeriod = 0;
    AudioSystem::acquireAudioSessionId(mSessionId, adjPid, adjUid);
    mSequence = 1;
    mObservedSequence = mSequence;
    mInOverrun = false;
    mFramesRead = 0;
    mFramesReadServerOffset = 0;

    return logIfErrorAndReturnStatus(status, "", __func__);
}
status_t AudioRecord::createRecord_l(const Modulo<uint32_t> &epoch)
{
    const int64_t beginNs = systemTime();
    const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
    IAudioFlinger::CreateRecordInput input;
    IAudioFlinger::CreateRecordOutput output;
    [[maybe_unused]] audio_session_t originalSessionId;
    void *iMemPointer;
    audio_track_cblk_t* cblk;
    status_t status;
    static const int32_t kMaxCreateAttempts = 3;
    int32_t remainingAttempts = kMaxCreateAttempts;

    if (audioFlinger == 0) {
        return logIfErrorAndReturnStatus(
                NO_INIT, StringPrintf("%s(%d): Could not get audioflinger", __func__, mPortId), "");
    }

    // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
    // After fast request is denied, we will request again if IAudioRecord is re-created.

    // Now that we have a reference to an I/O handle and have not yet handed it off to AudioFlinger,
    // we must release it ourselves if anything goes wrong.

    // Client can only express a preference for FAST.  Server will perform additional tests.
    if (mFlags & AUDIO_INPUT_FLAG_FAST) {
        bool useCaseAllowed =
            // any of these use cases:
            // use case 1: callback transfer mode
            (mTransfer == TRANSFER_CALLBACK) ||
            // use case 2: blocking read mode
            // The default buffer capacity at 48 kHz is 2048 frames, or ~42.6 ms.
            // That's enough for double-buffering with our standard 20 ms rule of thumb for
            // the minimum period of a non-SCHED_FIFO thread.
            // This is needed so that AAudio apps can do a low latency non-blocking read from a
            // callback running with SCHED_FIFO.
            (mTransfer == TRANSFER_SYNC) ||
            // use case 3: obtain/release mode
            (mTransfer == TRANSFER_OBTAIN);
        if (!useCaseAllowed) {
            ALOGD("%s(%d): AUDIO_INPUT_FLAG_FAST denied, incompatible transfer = %s",
                  __func__, mPortId,
                  convertTransferToText(mTransfer));
            mFlags = (audio_input_flags_t) (mFlags & ~(AUDIO_INPUT_FLAG_FAST |
                    AUDIO_INPUT_FLAG_RAW));
        }
    }

    input.attr = mAttributes;
    input.config.sample_rate = mSampleRate;
    input.config.channel_mask = mChannelMask;
    input.config.format = mFormat;
    input.clientInfo.attributionSource = mClientAttributionSource;
    input.clientInfo.clientTid = -1;
    if (mFlags & AUDIO_INPUT_FLAG_FAST) {
        if (mAudioRecordThread != 0) {
            input.clientInfo.clientTid = mAudioRecordThread->getTid();
        }
    }
    input.riid = mTracker->getRiid();

    input.flags = mFlags;
    // The notification frame count is the period between callbacks, as suggested by the client
    // but moderated by the server.  For record, the calculations are done entirely on server side.
    input.frameCount = mReqFrameCount;
    input.notificationFrameCount = mNotificationFramesReq;
    input.selectedDeviceId = mSelectedDeviceId;
    input.sessionId = mSessionId;
    originalSessionId = mSessionId;
    input.maxSharedAudioHistoryMs = mMaxSharedAudioHistoryMs;

    do {
        media::CreateRecordResponse response;
        auto aidlInput = input.toAidl();
        if (!aidlInput.ok()) {
            return logIfErrorAndReturnStatus(
                    BAD_VALUE,
                    StringPrintf("%s(%d): Could not create record due to invalid input", __func__,
                                 mPortId),
                    "");
        }
        status = audioFlinger->createRecord(aidlInput.value(), response); // 创建record

        auto recordOutput = IAudioFlinger::CreateRecordOutput::fromAidl(response);
        if (!recordOutput.ok()) {
            return logIfErrorAndReturnStatus(
                    BAD_VALUE,
                    StringPrintf("%s(%d): Could not create record output due to invalid response",
                                 __func__, mPortId),
                    "");
        }
        output = recordOutput.value();
        if (status == NO_ERROR) {
            break;
        }
        if (status != FAILED_TRANSACTION || --remainingAttempts <= 0) {
            return logIfErrorAndReturnStatus(
                    status,
                    StringPrintf("%s(%d): AudioFlinger could not create record track, status: %d",
                                 __func__, mPortId, status),
                    "");
        }
        // FAILED_TRANSACTION happens under very specific conditions causing a state mismatch
        // between audio policy manager and audio flinger during the input stream open sequence
        // and can be recovered by retrying.
        // Leave time for race condition to clear before retrying and randomize delay
        // to reduce the probability of concurrent retries in locked steps.
        usleep((20 + rand() % 30) * 10000);
    } while (1);

    ALOG_ASSERT(output.audioRecord != 0);

    // AudioFlinger now owns the reference to the I/O handle,
    // so we are no longer responsible for releasing it.

    mAwaitBoost = false;
    if (output.flags & AUDIO_INPUT_FLAG_FAST) {
        ALOGI("%s(%d): AUDIO_INPUT_FLAG_FAST successful; frameCount %zu -> %zu",
              __func__, mPortId,
              mReqFrameCount, output.frameCount);
        mAwaitBoost = true;
    }
    mFlags = output.flags;
    mRoutedDeviceId = output.selectedDeviceId;
    mSessionId = output.sessionId;
    mSampleRate = output.sampleRate;
    mServerConfig = output.serverConfig;
    mServerFrameSize = audio_bytes_per_frame(
            audio_channel_count_from_in_mask(mServerConfig.channel_mask), mServerConfig.format);
    mServerSampleSize = audio_bytes_per_sample(mServerConfig.format);
    mHalSampleRate = output.halConfig.sample_rate;
    mHalChannelCount = audio_channel_count_from_in_mask(output.halConfig.channel_mask);
    mHalFormat = output.halConfig.format;

    if (output.cblk == 0) {
        return logIfErrorAndReturnStatus(
                NO_INIT, StringPrintf("%s(%d): Could not get control block", __func__, mPortId),
                "");
    }
    // TODO: Using unsecurePointer() has some associated security pitfalls
    //       (see declaration for details).
    //       Either document why it is safe in this case or address the
    //       issue (e.g. by copying).
    iMemPointer = output.cblk ->unsecurePointer(); // 获取共享内存
    if (iMemPointer == NULL) {
        return logIfErrorAndReturnStatus(
                NO_INIT,
                StringPrintf("%s(%d): Could not get control block pointer", __func__, mPortId), "");
    }
    cblk = static_cast<audio_track_cblk_t*>(iMemPointer);

    // Starting address of buffers in shared memory.
    // The buffers are either immediately after the control block,
    // or in a separate area at discretion of server.
    void *buffers;
    if (output.buffers == 0) {
        buffers = cblk + 1;
    } else {
        // TODO: Using unsecurePointer() has some associated security pitfalls
        //       (see declaration for details).
        //       Either document why it is safe in this case or address the
        //       issue (e.g. by copying).
        buffers = output.buffers->unsecurePointer();
        if (buffers == NULL) {
            return logIfErrorAndReturnStatus(
                    NO_INIT,
                    StringPrintf("%s(%d): Could not get buffer pointer", __func__, mPortId), "");
        }
    }

    // invariant that mAudioRecord != 0 is true only after set() returns successfully
    if (mAudioRecord != 0) {
        IInterface::asBinder(mAudioRecord)->unlinkToDeath(mDeathNotifier, this);
        mDeathNotifier.clear();
    }
    mAudioRecord = output.audioRecord;
    mCblkMemory = output.cblk;
    mBufferMemory = output.buffers;
    IPCThreadState::self()->flushCommands();

    mCblk = cblk;
    // note that output.frameCount is the (possibly revised) value of mReqFrameCount
    if (output.frameCount < mReqFrameCount || (mReqFrameCount == 0 && output.frameCount == 0)) {
        ALOGW("%s(%d): Requested frameCount %zu but received frameCount %zu",
              __func__, output.portId,
              mReqFrameCount,  output.frameCount);
    }

    // Make sure that application is notified with sufficient margin before overrun.
    // The computation is done on server side.
    if (mNotificationFramesReq > 0 && output.notificationFrameCount != mNotificationFramesReq) {
        ALOGW("%s(%d): Server adjusted notificationFrames from %u to %zu for frameCount %zu",
                __func__, output.portId,
                mNotificationFramesReq, output.notificationFrameCount, output.frameCount);
    }
    mNotificationFramesAct = (uint32_t)output.notificationFrameCount;
    if (mServerConfig.format != mFormat && mCallback != nullptr) {
        mFormatConversionBufRaw = std::make_unique<uint8_t[]>(mNotificationFramesAct * mFrameSize);
        mFormatConversionBuffer.raw = mFormatConversionBufRaw.get();
    }

    //mInput != input includes the case where mInput == AUDIO_IO_HANDLE_NONE for first creation
    if (mDeviceCallback != 0) {
        if (mInput != AUDIO_IO_HANDLE_NONE) {
            AudioSystem::removeAudioDeviceCallback(this, mInput, mPortId);
        }
        AudioSystem::addAudioDeviceCallback(this, output.inputId, output.portId);
    }

    if (!mSharedAudioPackageName.empty()) {
        mAudioRecord->shareAudioHistory(mSharedAudioPackageName, mSharedAudioStartMs);
    }

    mPortId = output.portId;
    // We retain a copy of the I/O handle, but don't own the reference
    mInput = output.inputId;
    mRefreshRemaining = true;

    mFrameCount = output.frameCount;
    // If IAudioRecord is re-created, don't let the requested frameCount
    // decrease.  This can confuse clients that cache frameCount().
    if (mFrameCount > mReqFrameCount) {
        mReqFrameCount = mFrameCount;
    }

    // update proxy
    mProxy = new AudioRecordClientProxy(cblk, buffers, mFrameCount, mServerFrameSize);
    mProxy->setEpoch(epoch);
    mProxy->setMinimum(mNotificationFramesAct);

    mDeathNotifier = new DeathNotifier(this);
    IInterface::asBinder(mAudioRecord)->linkToDeath(mDeathNotifier, this);

    mMetricsId = std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_RECORD) + std::to_string(mPortId);
    mediametrics::LogItem(mMetricsId)
        .set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_CREATE)
        .set(AMEDIAMETRICS_PROP_EXECUTIONTIMENS, (int64_t)(systemTime() - beginNs))
        // the following are immutable (at least until restore)
        .set(AMEDIAMETRICS_PROP_FLAGS, toString(mFlags).c_str())
        .set(AMEDIAMETRICS_PROP_ORIGINALFLAGS, toString(mOrigFlags).c_str())
        .set(AMEDIAMETRICS_PROP_SESSIONID, (int32_t)mSessionId)
        .set(AMEDIAMETRICS_PROP_TRACKID, mPortId)
        .set(AMEDIAMETRICS_PROP_LOGSESSIONID, mLogSessionId)
        .set(AMEDIAMETRICS_PROP_SOURCE, toString(mAttributes.source).c_str())
        .set(AMEDIAMETRICS_PROP_THREADID, (int32_t)output.inputId)
        .set(AMEDIAMETRICS_PROP_SELECTEDDEVICEID, (int32_t)mSelectedDeviceId)
        .set(AMEDIAMETRICS_PROP_ROUTEDDEVICEID, (int32_t)mRoutedDeviceId)
        .set(AMEDIAMETRICS_PROP_ENCODING, toString(mFormat).c_str())
        .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
        .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
        .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
        // the following are NOT immutable
        .set(AMEDIAMETRICS_PROP_STATE, stateToString(mActive))
        .set(AMEDIAMETRICS_PROP_STATUS, (int32_t)status)
        .set(AMEDIAMETRICS_PROP_SELECTEDMICDIRECTION, (int32_t)mSelectedMicDirection)
        .set(AMEDIAMETRICS_PROP_SELECTEDMICFIELDDIRECTION, (double)mSelectedMicFieldDimension)
        .record();

    // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger
    return logIfErrorAndReturnStatus(status, "", "");
}
  • 创建一个 Record 结构,并创建可以跨进程共享的内存
  • 将该 Record 和一个线程关联,这样这个线程可以一直 loop,并调用 hal 层的采集接口进行采集
  • 把这个 Record 结构包装成一个 binder,这样调用方可以直接操作该 Record
//frameworks/av/services/audioflinger/AudioFlinger.cpp
status_t AudioFlinger::createRecord(const media::CreateRecordRequest& _input,
                                    media::CreateRecordResponse& _output)
{
    CreateRecordInput input = VALUE_OR_RETURN_STATUS(CreateRecordInput::fromAidl(_input));
    CreateRecordOutput output;

    sp<IAfRecordTrack> recordTrack;
    sp<Client> client;
    status_t lStatus;
    audio_session_t sessionId = input.sessionId;
    audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;

    output.cblk.clear();
    output.buffers.clear();
    output.inputId = AUDIO_IO_HANDLE_NONE;

    // TODO b/182392553: refactor or clean up
    AttributionSourceState adjAttributionSource = input.clientInfo.attributionSource;
    bool updatePid = (adjAttributionSource.pid == -1);
    const uid_t callingUid = IPCThreadState::self()->getCallingUid();
    const uid_t currentUid = VALUE_OR_RETURN_STATUS(legacy2aidl_uid_t_int32_t(
           adjAttributionSource.uid));
    if (!isAudioServerOrMediaServerOrSystemServerOrRootUid(callingUid)) {
        ALOGW_IF(currentUid != callingUid,
                "%s uid %d tried to pass itself off as %d",
                __FUNCTION__, callingUid, currentUid);
        adjAttributionSource.uid = VALUE_OR_RETURN_STATUS(legacy2aidl_uid_t_int32_t(callingUid));
        updatePid = true;
    }
    const pid_t callingPid = IPCThreadState::self()->getCallingPid();
    const pid_t currentPid = VALUE_OR_RETURN_STATUS(aidl2legacy_int32_t_pid_t(
            adjAttributionSource.pid));
    if (updatePid) {
        ALOGW_IF(currentPid != (pid_t)-1 && currentPid != callingPid,
                 "%s uid %d pid %d tried to pass itself off as pid %d",
                 __func__, callingUid, callingPid, currentPid);
        adjAttributionSource.pid = VALUE_OR_RETURN_STATUS(legacy2aidl_pid_t_int32_t(callingPid));
    }
    adjAttributionSource = afutils::checkAttributionSourcePackage(
            adjAttributionSource);
    // further format checks are performed by createRecordTrack_l()
    if (!audio_is_valid_format(input.config.format)) {
        ALOGE("createRecord() invalid format %#x", input.config.format);
        lStatus = BAD_VALUE;
        goto Exit;
    }

    // further channel mask checks are performed by createRecordTrack_l()
    if (!audio_is_input_channel(input.config.channel_mask)) {
        ALOGE("createRecord() invalid channel mask %#x", input.config.channel_mask);
        lStatus = BAD_VALUE;
        goto Exit;
    }

    if (sessionId == AUDIO_SESSION_ALLOCATE) {
        sessionId = (audio_session_t) newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
    } else if (audio_unique_id_get_use(sessionId) != AUDIO_UNIQUE_ID_USE_SESSION) {
        lStatus = BAD_VALUE;
        goto Exit;
    }

    output.sessionId = sessionId;
    output.selectedDeviceId = input.selectedDeviceId;
    output.flags = input.flags;

    client = registerPid(VALUE_OR_FATAL(aidl2legacy_int32_t_pid_t(adjAttributionSource.pid))); //创建共享内存

    // Not a conventional loop, but a retry loop for at most two iterations total.
    // Try first maybe with FAST flag then try again without FAST flag if that fails.
    // Exits loop via break on no error of got exit on error
    // The sp<> references will be dropped when re-entering scope.
    // The lack of indentation is deliberate, to reduce code churn and ease merges.
    for (;;) {
    // release previously opened input if retrying.
    if (output.inputId != AUDIO_IO_HANDLE_NONE) {
        recordTrack.clear();
        AudioSystem::releaseInput(portId);
        output.inputId = AUDIO_IO_HANDLE_NONE;
        output.selectedDeviceId = input.selectedDeviceId;
        portId = AUDIO_PORT_HANDLE_NONE;
    }
    lStatus = AudioSystem::getInputForAttr(&input.attr, &output.inputId, // 调用hal层获取属性信息
                                      input.riid,
                                      sessionId,
                                    // FIXME compare to AudioTrack
                                      adjAttributionSource,
                                      &input.config,
                                      output.flags, &output.selectedDeviceId, &portId);
    if (lStatus != NO_ERROR) {
        ALOGE("createRecord() getInputForAttr return error %d", lStatus);
        goto Exit;
    }

    {
        audio_utils::lock_guard _l(mutex());
        IAfRecordThread* const thread = checkRecordThread_l(output.inputId); // 获取采集线程
        if (thread == NULL) {
            ALOGW("createRecord() checkRecordThread_l failed, input handle %d", output.inputId);
            lStatus = FAILED_TRANSACTION;
            goto Exit;
        }

        ALOGV("createRecord() lSessionId: %d input %d", sessionId, output.inputId);

        output.sampleRate = input.config.sample_rate;
        output.frameCount = input.frameCount;
        output.notificationFrameCount = input.notificationFrameCount;

        recordTrack = thread->createRecordTrack_l(client, input.attr, &output.sampleRate, // 在采集线程中创建Record
                                                  input.config.format, input.config.channel_mask,
                                                  &output.frameCount, sessionId,
                                                  &output.notificationFrameCount,
                                                  callingPid, adjAttributionSource, &output.flags,
                                                  input.clientInfo.clientTid,
                                                  &lStatus, portId, input.maxSharedAudioHistoryMs);
        LOG_ALWAYS_FATAL_IF((lStatus == NO_ERROR) && (recordTrack == 0));

        // lStatus == BAD_TYPE means FAST flag was rejected: request a new input from
        // audio policy manager without FAST constraint
        if (lStatus == BAD_TYPE) {
            continue;
        }

        if (lStatus != NO_ERROR) {
            goto Exit;
        }

        if (recordTrack->isFastTrack()) {
            output.serverConfig = {
                    thread->sampleRate(),
                    thread->channelMask(),
                    thread->format()
            };
        } else {
            output.serverConfig = {
                    recordTrack->sampleRate(),
                    recordTrack->channelMask(),
                    recordTrack->format()
            };
        }

        output.halConfig = {
                thread->sampleRate(),
                thread->channelMask(),
                thread->format()
        };

        // Check if one effect chain was awaiting for an AudioRecord to be created on this
        // session and move it to this thread.
        sp<IAfEffectChain> chain = getOrphanEffectChain_l(sessionId);
        if (chain != 0) {
            audio_utils::lock_guard _l2(thread->mutex());
            thread->addEffectChain_l(chain);
        }
        break;
    }
    // End of retry loop.
    // The lack of indentation is deliberate, to reduce code churn and ease merges.
    }

    output.cblk = recordTrack->getCblk();
    output.buffers = recordTrack->getBuffers(); // 返回匿名共享内存操作符
    output.portId = portId;

    output.audioRecord = IAfRecordTrack::createIAudioRecordAdapter(recordTrack);
    _output = VALUE_OR_FATAL(output.toAidl()); // 包装成binder

Exit:
    if (lStatus != NO_ERROR) {
        // remove local strong reference to Client before deleting the RecordTrack so that the
        // Client destructor is called by the TrackBase destructor with clientMutex() held
        // Don't hold clientMutex() when releasing the reference on the track as the
        // destructor will acquire it.
        {
            audio_utils::lock_guard _cl(clientMutex());
            client.clear();
        }
        recordTrack.clear();
        if (output.inputId != AUDIO_IO_HANDLE_NONE) {
            AudioSystem::releaseInput(portId);
        }
    }

    return lStatus;
// frameworks/av/services/audioflinger/Threads.cpp
// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mutex() held
sp<IAfRecordTrack> RecordThread::createRecordTrack_l(
        const sp<Client>& client,
        const audio_attributes_t& attr,
        uint32_t *pSampleRate,
        audio_format_t format,
        audio_channel_mask_t channelMask,
        size_t *pFrameCount,
        audio_session_t sessionId,
        size_t *pNotificationFrameCount,
        pid_t creatorPid,
        const AttributionSourceState& attributionSource,
        audio_input_flags_t *flags,
        pid_t tid,
        status_t *status,
        audio_port_handle_t portId,
        int32_t maxSharedAudioHistoryMs)
{
    size_t frameCount = *pFrameCount;
    size_t notificationFrameCount = *pNotificationFrameCount;
    sp<IAfRecordTrack> track;
    status_t lStatus;
    audio_input_flags_t inputFlags = mInput->flags;
    audio_input_flags_t requestedFlags = *flags;
    uint32_t sampleRate;

    lStatus = initCheck();
    if (lStatus != NO_ERROR) {
        ALOGE("createRecordTrack_l() audio driver not initialized");
        goto Exit;
    }

    if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
        ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
        lStatus = BAD_VALUE;
        goto Exit;
    }

    if (maxSharedAudioHistoryMs != 0) {
        if (!captureHotwordAllowed(attributionSource)) {
            lStatus = PERMISSION_DENIED;
            goto Exit;
        }
        if (maxSharedAudioHistoryMs < 0
                || maxSharedAudioHistoryMs > kMaxSharedAudioHistoryMs) {
            lStatus = BAD_VALUE;
            goto Exit;
        }
    }
    if (*pSampleRate == 0) {
        *pSampleRate = mSampleRate;
    }
    sampleRate = *pSampleRate;

    // special case for FAST flag considered OK if fast capture is present and access to
    // audio history is not required
    if (hasFastCapture() && mMaxSharedAudioHistoryMs == 0) {
        inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
    }

    // Check if requested flags are compatible with input stream flags
    if ((*flags & inputFlags) != *flags) {
        ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
                " input flags (%08x)",
              *flags, inputFlags);
        *flags = (audio_input_flags_t)(*flags & inputFlags);
    }

    // client expresses a preference for FAST and no access to audio history,
    // but we get the final say
    if (*flags & AUDIO_INPUT_FLAG_FAST && maxSharedAudioHistoryMs == 0) {
      if (
            // we formerly checked for a callback handler (non-0 tid),
            // but that is no longer required for TRANSFER_OBTAIN mode
            // No need to match hardware format, format conversion will be done in client side.
            //
            // Frame count is not specified (0), or is less than or equal the pipe depth.
            // It is OK to provide a higher capacity than requested.
            // We will force it to mPipeFramesP2 below.
            (frameCount <= mPipeFramesP2) &&
            // PCM data
            audio_is_linear_pcm(format) &&
            // hardware channel mask
            (channelMask == mChannelMask) &&
            // hardware sample rate
            (sampleRate == mSampleRate) &&
            // record thread has an associated fast capture
            hasFastCapture() &&
            // there are sufficient fast track slots available
            mFastTrackAvail
        ) {
          // check compatibility with audio effects.
          audio_utils::lock_guard _l(mutex());
          // Do not accept FAST flag if the session has software effects
          sp<IAfEffectChain> chain = getEffectChain_l(sessionId);
          if (chain != 0) {
              audio_input_flags_t old = *flags;
              chain->checkInputFlagCompatibility(flags);
              if (old != *flags) {
                  ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
                          this, (int)old, (int)*flags);
              }
          }
          ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
                   "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
                   this, frameCount, mFrameCount);
      } else {
        ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
                "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
                this, frameCount, mFrameCount, mPipeFramesP2,
                format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
                hasFastCapture(), tid, mFastTrackAvail);
        *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
      }
    }

    // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
    if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
            (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
        *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
        lStatus = BAD_TYPE;
        goto Exit;
    }

    // compute track buffer size in frames, and suggest the notification frame count
    if (*flags & AUDIO_INPUT_FLAG_FAST) {
        // fast track: frame count is exactly the pipe depth
        frameCount = mPipeFramesP2;
        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
        notificationFrameCount = mFrameCount;
    } else {
        // not fast track: max notification period is resampled equivalent of one HAL buffer time
        //                 or 20 ms if there is a fast capture
        // TODO This could be a roundupRatio inline, and const
        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
                * sampleRate + mSampleRate - 1) / mSampleRate;
        // minimum number of notification periods is at least kMinNotifications,
        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
        static const size_t kMinNotifications = 3;
        static const uint32_t kMinMs = 30;
        // TODO This could be a roundupRatio inline
        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
        // TODO This could be a roundupRatio inline
        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
                maxNotificationFrames;
        const size_t minFrameCount = maxNotificationFrames *
                max(kMinNotifications, minNotificationsByMs);
        frameCount = max(frameCount, minFrameCount);
        if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
            notificationFrameCount = maxNotificationFrames;
        }
    }
    *pFrameCount = frameCount;
    *pNotificationFrameCount = notificationFrameCount;

    { // scope for mutex()
        audio_utils::lock_guard _l(mutex());
        int32_t startFrames = -1;
        if (!mSharedAudioPackageName.empty()
                && mSharedAudioPackageName == attributionSource.packageName
                && mSharedAudioSessionId == sessionId
                && captureHotwordAllowed(attributionSource)) {
            startFrames = mSharedAudioStartFrames;
        }

        track = IAfRecordTrack::create(this, client, attr, sampleRate, // 创建Record
                      format, channelMask, frameCount,
                      nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid,
                      attributionSource, *flags, IAfTrackBase::TYPE_DEFAULT, portId,
                      startFrames);

        lStatus = track->initCheck();
        if (lStatus != NO_ERROR) {
            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
            // track must be cleared from the caller as the caller has the AF lock
            goto Exit;
        }
        mTracks.add(track);  // 将Record加入到列表中

        if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
            pid_t callingPid = IPCThreadState::self()->getCallingPid();
            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
            // so ask activity manager to do this on our behalf
            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
        }

        if (maxSharedAudioHistoryMs != 0) {
            sendResizeBufferConfigEvent_l(maxSharedAudioHistoryMs);
        }
    }

    lStatus = NO_ERROR;

Exit:
    *status = lStatus;
    return track;
}
// frameworks/av/services/audioflinger/Tracks.cpp
// RecordTrack constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held
RecordTrack::RecordTrack(
            IAfRecordThread* thread,
            const sp<Client>& client,
            const audio_attributes_t& attr,
            uint32_t sampleRate,
            audio_format_t format,
            audio_channel_mask_t channelMask,
            size_t frameCount,
            void *buffer,
            size_t bufferSize,
            audio_session_t sessionId,
            pid_t creatorPid,
            const AttributionSourceState& attributionSource,
            audio_input_flags_t flags,
            track_type type,
            audio_port_handle_t portId,
            int32_t startFrames)
    :   TrackBase(thread, client, attr, sampleRate, format,
                  channelMask, frameCount, buffer, bufferSize, sessionId,
                  creatorPid,
                  VALUE_OR_FATAL(aidl2legacy_int32_t_uid_t(attributionSource.uid)),
                  false /*isOut*/,
                  (type == TYPE_DEFAULT) ?
                          ((flags & AUDIO_INPUT_FLAG_FAST) ? ALLOC_PIPE : ALLOC_CBLK) :
                          ((buffer == NULL) ? ALLOC_LOCAL : ALLOC_NONE),
                  type, portId,
                  std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_RECORD) + std::to_string(portId)),
        mOverflow(false),
        mResamplerBufferProvider(NULL), // initialize in case of early constructor exit
        mRecordBufferConverter(NULL),
        mFlags(flags),
        mSilenced(false),
        mStartFrames(startFrames)
{
    if (mCblk == NULL) {
        return;
    }

    if (!isDirect()) {
        mRecordBufferConverter = new RecordBufferConverter(
                thread->channelMask(), thread->format(), thread->sampleRate(),
                channelMask, format, sampleRate);
        // Check if the RecordBufferConverter construction was successful.
        // If not, don't continue with construction.
        //
        // NOTE: It would be extremely rare that the record track cannot be created
        // for the current device, but a pending or future device change would make
        // the record track configuration valid.
        if (mRecordBufferConverter->initCheck() != NO_ERROR) {
            ALOGE("%s(%d): RecordTrack unable to create record buffer converter", __func__, mId);
            return;
        }
    }

    mServerProxy = new AudioRecordServerProxy(mCblk, mBuffer, frameCount,
            mFrameSize, !isExternalTrack());

    mResamplerBufferProvider = new ResamplerBufferProvider(this);

    if (flags & AUDIO_INPUT_FLAG_FAST) {
        ALOG_ASSERT(thread->fastTrackAvailable());
        thread->setFastTrackAvailable(false);
    } else {
        // TODO: only Normal Record has timestamps (Fast Record does not).
        mServerLatencySupported = checkServerLatencySupported(mFormat, flags);
    }
#ifdef TEE_SINK
    mTee.setId(std::string("_") + std::to_string(mThreadIoHandle)
            + "_" + std::to_string(mId)
            + "_R");
#endif

    // Once this item is logged by the server, the client can add properties.
    mTrackMetrics.logConstructor(creatorPid, uid(), id());
}
//frameworks/av/services/audioflinger/Threads.cpp
RecordThread::RecordThread(const sp<IAfThreadCallback>& afThreadCallback,
                                         AudioStreamIn *input,
                                         audio_io_handle_t id,
                                         bool systemReady
                                         ) :
    ThreadBase(afThreadCallback, id, RECORD, systemReady, false /* isOut */),
    mInput(input),
    mSource(mInput),
    mActiveTracks(&this->mLocalLog),
    mRsmpInBuffer(NULL),
    // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
    mRsmpInRear(0)
    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
    // mFastCapture below
    , mFastCaptureFutex(0)
    // mInputSource
    // mPipeSink
    // mPipeSource
    , mPipeFramesP2(0)
    // mPipeMemory
    // mFastCaptureNBLogWriter
    , mFastTrackAvail(false)
    , mBtNrecSuspended(false)
{
    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
    mNBLogWriter = afThreadCallback->newWriter_l(kLogSize, mThreadName);

    if (mInput->audioHwDev != nullptr) {
        mIsMsdDevice = strcmp(
                mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
    }

    readInputParameters_l();

    // TODO: We may also match on address as well as device type for
    // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
    // TODO: This property should be ensure that only contains one single device type.
    mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
            "audio.timestamp.corrected_input_device",
            (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
                                   : AUDIO_DEVICE_NONE));

    // create an NBAIO source for the HAL input stream, and negotiate
    mInputSource = new AudioStreamInSource(input->stream); // 读取源头
    size_t numCounterOffers = 0;
    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
#if !LOG_NDEBUG
    [[maybe_unused]] ssize_t index =
#else
    (void)
#endif
            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
    ALOG_ASSERT(index == 0);

    // initialize fast capture depending on configuration
    bool initFastCapture;
    switch (kUseFastCapture) {
    case FastCapture_Never:
        initFastCapture = false;
        ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
        break;
    case FastCapture_Always:
        initFastCapture = true;
        ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
        break;
    case FastCapture_Static:
        initFastCapture = !mIsMsdDevice // Disable fast capture for MSD BUS devices.
                && audio_is_linear_pcm(mFormat)
                && (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
        ALOGV("%p kUseFastCapture = Static, format = 0x%x, (%lld * 1000) / %u vs %u, "
                "initFastCapture = %d, mIsMsdDevice = %d", this, mFormat, (long long)mFrameCount,
                mSampleRate, kMinNormalCaptureBufferSizeMs, initFastCapture, mIsMsdDevice);
        break;
    // case FastCapture_Dynamic:
    }

    if (initFastCapture) {
        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
        NBAIO_Format format = mInputSource->format();
        // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
        size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
        void *pipeBuffer = nullptr;
        const sp<MemoryDealer> roHeap(readOnlyHeap());
        sp<IMemory> pipeMemory;
        if ((roHeap == 0) ||
                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
                (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
            ALOGE("not enough memory for pipe buffer size=%zu; "
                    "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
                    pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
                    (long long)kRecordThreadReadOnlyHeapSize);
            goto failed;
        }
        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
        memset(pipeBuffer, 0, pipeSize);
        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
        const NBAIO_Format offersFast[1] = {format};
        size_t numCounterOffersFast = 0;
        [[maybe_unused]] ssize_t index2 = pipe->negotiate(offersFast, std::size(offersFast),
                nullptr /* counterOffers */, numCounterOffersFast);
        ALOG_ASSERT(index2 == 0);
        mPipeSink = pipe;
        PipeReader *pipeReader = new PipeReader(*pipe);
        numCounterOffersFast = 0;
        index2 = pipeReader->negotiate(offersFast, std::size(offersFast),
                nullptr /* counterOffers */, numCounterOffersFast);
        ALOG_ASSERT(index2 == 0);
        mPipeSource = pipeReader;
        mPipeFramesP2 = pipeFramesP2;
        mPipeMemory = pipeMemory;

        // create fast capture
        mFastCapture = new FastCapture();
        FastCaptureStateQueue *sq = mFastCapture->sq();
#ifdef STATE_QUEUE_DUMP
        // FIXME
#endif
        FastCaptureState *state = sq->begin();
        state->mCblk = NULL;
        state->mInputSource = mInputSource.get();
        state->mInputSourceGen++;
        state->mPipeSink = pipe;
        state->mPipeSinkGen++;
        state->mFrameCount = mFrameCount;
        state->mCommand = FastCaptureState::COLD_IDLE;
        // already done in constructor initialization list
        //mFastCaptureFutex = 0;
        state->mColdFutexAddr = &mFastCaptureFutex;
        state->mColdGen++;
        state->mDumpState = &mFastCaptureDumpState;
#ifdef TEE_SINK
        // FIXME
#endif
        mFastCaptureNBLogWriter =
                afThreadCallback->newWriter_l(kFastCaptureLogSize, "FastCapture");
        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
        sq->end();
        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);

        // start the fast capture
        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
        pid_t tid = mFastCapture->getTid();
        sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
        stream()->setHalThreadPriority(kPriorityFastCapture);
#ifdef AUDIO_WATCHDOG
        // FIXME
#endif

        mFastTrackAvail = true;
    }
#ifdef TEE_SINK
    mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
    mTee.setId(std::string("_") + std::to_string(mId) + "_C");
#endif
failed: ;

    // FIXME mNormalSource
}
//frameworks/av/services/audioflinger/Threads.cpp
bool RecordThread::threadLoop()
{
    nsecs_t lastWarning = 0;

    inputStandBy();

reacquire_wakelock:
    {
        audio_utils::lock_guard _l(mutex());
        acquireWakeLock_l();
    }

    // used to request a deferred sleep, to be executed later while mutex is unlocked
    uint32_t sleepUs = 0;

    // timestamp correction enable is determined under lock, used in processing step.
    bool timestampCorrectionEnabled = false;

    int64_t lastLoopCountRead = -2;  // never matches "previous" loop, when loopCount = 0.

    // loop while there is work to do
    for (int64_t loopCount = 0;; ++loopCount) {  // loopCount used for statistics tracking
        // Note: these sp<> are released at the end of the for loop outside of the mutex() lock.
        sp<IAfRecordTrack> activeTrack;
        std::vector<sp<IAfRecordTrack>> oldActiveTracks;
        Vector<sp<IAfEffectChain>> effectChains;

        // activeTracks accumulates a copy of a subset of mActiveTracks
        Vector<sp<IAfRecordTrack>> activeTracks;

        // reference to the (first and only) active fast track
        sp<IAfRecordTrack> fastTrack;

        // reference to a fast track which is about to be removed
        sp<IAfRecordTrack> fastTrackToRemove;

        bool silenceFastCapture = false;

        { // scope for mutex()
            audio_utils::unique_lock _l(mutex());

            processConfigEvents_l();

            // check exitPending here because checkForNewParameters_l() and
            // checkForNewParameters_l() can temporarily release mutex()
            if (exitPending()) {
                break;
            }

            // sleep with mutex unlocked
            if (sleepUs > 0) {
                ATRACE_BEGIN("sleepC");
                (void)mWaitWorkCV.wait_for(_l, std::chrono::microseconds(sleepUs));
                ATRACE_END();
                sleepUs = 0;
                continue;
            }

            // if no active track(s), then standby and release wakelock
            size_t size = mActiveTracks.size();
            if (size == 0) {
                standbyIfNotAlreadyInStandby();
                // exitPending() can't become true here
                releaseWakeLock_l();
                ALOGV("RecordThread: loop stopping");
                // go to sleep
                mWaitWorkCV.wait(_l);
                ALOGV("RecordThread: loop starting");
                goto reacquire_wakelock;
            }

            bool doBroadcast = false;
            bool allStopped = true;
            for (size_t i = 0; i < size; ) {
                if (activeTrack) {  // ensure track release is outside lock.
                    oldActiveTracks.emplace_back(std::move(activeTrack));
                }
                activeTrack = mActiveTracks[i];
                if (activeTrack->isTerminated()) {
                    if (activeTrack->isFastTrack()) {
                        ALOG_ASSERT(fastTrackToRemove == 0);
                        fastTrackToRemove = activeTrack;
                    }
                    removeTrack_l(activeTrack);
                    mActiveTracks.remove(activeTrack);
                    size--;
                    continue;
                }

                IAfTrackBase::track_state activeTrackState = activeTrack->state();
                switch (activeTrackState) {

                case IAfTrackBase::PAUSING:
                    mActiveTracks.remove(activeTrack);
                    activeTrack->setState(IAfTrackBase::PAUSED);
                    if (activeTrack->isFastTrack()) {
                        ALOGV("%s fast track is paused, thus removed from active list", __func__);
                        // Keep a ref on fast track to wait for FastCapture thread to get updated
                        // state before potential track removal
                        fastTrackToRemove = activeTrack;
                    }
                    doBroadcast = true;
                    size--;
                    continue;

                case IAfTrackBase::STARTING_1:
                    sleepUs = 10000;
                    i++;
                    allStopped = false;
                    continue;

                case IAfTrackBase::STARTING_2:
                    doBroadcast = true;
                    if (mStandby) {
                        mThreadMetrics.logBeginInterval();
                        mThreadSnapshot.onBegin();
                        mStandby = false;
                    }
                    activeTrack->setState(IAfTrackBase::ACTIVE);
                    allStopped = false;
                    break;

                case IAfTrackBase::ACTIVE:
                    allStopped = false;
                    break;

                case IAfTrackBase::IDLE:    // cannot be on ActiveTracks if idle
                case IAfTrackBase::PAUSED:  // cannot be on ActiveTracks if paused
                case IAfTrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
                default:
                    LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
                            __func__, activeTrackState, activeTrack->id(), size);
                }

                if (activeTrack->isFastTrack()) {
                    ALOG_ASSERT(!mFastTrackAvail);
                    ALOG_ASSERT(fastTrack == 0);
                    // if the active fast track is silenced either:
                    // 1) silence the whole capture from fast capture buffer if this is
                    //    the only active track
                    // 2) invalidate this track: this will cause the client to reconnect and possibly
                    //    be invalidated again until unsilenced
                    bool invalidate = false;
                    if (activeTrack->isSilenced()) {
                        if (size > 1) {
                            invalidate = true;
                        } else {
                            silenceFastCapture = true;
                        }
                    }
                    // Invalidate fast tracks if access to audio history is required as this is not
                    // possible with fast tracks. Once the fast track has been invalidated, no new
                    // fast track will be created until mMaxSharedAudioHistoryMs is cleared.
                    if (mMaxSharedAudioHistoryMs != 0) {
                        invalidate = true;
                    }
                    if (invalidate) {
                        activeTrack->invalidate();
                        ALOG_ASSERT(fastTrackToRemove == 0);
                        fastTrackToRemove = activeTrack;
                        removeTrack_l(activeTrack);
                        mActiveTracks.remove(activeTrack);
                        size--;
                        continue;
                    }
                    fastTrack = activeTrack;
                }

                activeTracks.add(activeTrack);
                i++;

            }

            mActiveTracks.updatePowerState_l(this);

            updateMetadata_l();

            if (allStopped) {
                standbyIfNotAlreadyInStandby();
            }
            if (doBroadcast) {
                mStartStopCV.notify_all();
            }

            // sleep if there are no active tracks to process
            if (activeTracks.isEmpty()) {
                if (sleepUs == 0) {
                    sleepUs = kRecordThreadSleepUs;
                }
                continue;
            }
            sleepUs = 0;

            timestampCorrectionEnabled = isTimestampCorrectionEnabled_l();
            lockEffectChains_l(effectChains);
        }

        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0

        size_t size = effectChains.size();
        for (size_t i = 0; i < size; i++) {
            // thread mutex is not locked, but effect chain is locked
            effectChains[i]->process_l();
        }

        // Push a new fast capture state if fast capture is not already running, or cblk change
        if (mFastCapture != 0) {
            FastCaptureStateQueue *sq = mFastCapture->sq();
            FastCaptureState *state = sq->begin();
            bool didModify = false;
            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
                if (state->mCommand == FastCaptureState::COLD_IDLE) {
                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
                    if (old == -1) {
                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
                    }
                }
                state->mCommand = FastCaptureState::READ_WRITE;
#if 0   // FIXME
                mFastCaptureDumpState.increaseSamplingN(mAfThreadCallback->isLowRamDevice() ?
                        FastThreadDumpState::kSamplingNforLowRamDevice :
                        FastThreadDumpState::kSamplingN);
#endif
                didModify = true;
            }
            audio_track_cblk_t *cblkOld = state->mCblk;
            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
            if (cblkNew != cblkOld) {
                state->mCblk = cblkNew;
                // block until acked if removing a fast track
                if (cblkOld != NULL) {
                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
                }
                didModify = true;
            }
            AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
                    reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
            if (state->mFastPatchRecordBufferProvider != abp) {
                state->mFastPatchRecordBufferProvider = abp;
                state->mFastPatchRecordFormat = fastTrack == 0 ?
                        AUDIO_FORMAT_INVALID : fastTrack->format();
                didModify = true;
            }
            if (state->mSilenceCapture != silenceFastCapture) {
                state->mSilenceCapture = silenceFastCapture;
                didModify = true;
            }
            sq->end(didModify);
            if (didModify) {
                sq->push(block);
#if 0
                if (kUseFastCapture == FastCapture_Dynamic) {
                    mNormalSource = mPipeSource;
                }
#endif
            }
        }

        // now run the fast track destructor with thread mutex unlocked
        fastTrackToRemove.clear();

        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
        // slow, then this RecordThread will overrun by not calling HAL read often enough.
        // If destination is non-contiguous, first read past the nominal end of buffer, then
        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.

        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
        ssize_t framesRead = 0; // not needed, remove clang-tidy warning.
        const int64_t lastIoBeginNs = systemTime(); // start IO timing

        // If an NBAIO source is present, use it to read the normal capture's data
        // 接下来就是开始采集
        if (mPipeSource != 0) {
            size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);

            // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
            // to the full buffer point (clearing the overflow condition).  Upon OVERRUN error,
            // we immediately retry the read() to get data and prevent another overflow.
            for (int retries = 0; retries <= 2; ++retries) {
                ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
                framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize, // 通过hal 采集
                        framesToRead);
                if (framesRead != OVERRUN) break;
            }

            const ssize_t availableToRead = mPipeSource->availableToRead();
            if (availableToRead >= 0) {
                mMonopipePipeDepthStats.add(availableToRead);
                // PipeSource is the primary clock.  It is up to the AudioRecord client to keep up.
                LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
                        "more frames to read than fifo size, %zd > %zu",
                        availableToRead, mPipeFramesP2);
                const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
                const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
                ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
                        mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
                sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
            }
            if (framesRead < 0) {
                status_t status = (status_t) framesRead;
                switch (status) {
                case OVERRUN:
                    ALOGW("overrun on read from pipe");
                    framesRead = 0;
                    break;
                case NEGOTIATE:
                    ALOGE("re-negotiation is needed");
                    framesRead = -1;  // Will cause an attempt to recover.
                    break;
                default:
                    ALOGE("unknown error %d on read from pipe", status);
                    break;
                }
            }
        // otherwise use the HAL / AudioStreamIn directly
        } else {
            ATRACE_BEGIN("read");
            size_t bytesRead;
            status_t result = mSource->read(
                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead); // 通过hal 采集
            ATRACE_END();
            if (result < 0) {
                framesRead = result;
            } else {
                framesRead = bytesRead / mFrameSize;
            }
        }

        const int64_t lastIoEndNs = systemTime(); // end IO timing

        // Update server timestamp with server stats
        // systemTime() is optional if the hardware supports timestamps.
        if (framesRead >= 0) {
            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
        }

        // Update server timestamp with kernel stats
        if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
            int64_t position, time;
            if (mStandby) {
                mTimestampVerifier.discontinuity(audio_is_linear_pcm(mFormat) ?
                    mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS :
                    mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
            } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
                    && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {

                mTimestampVerifier.add(position, time, mSampleRate);
                if (timestampCorrectionEnabled) {
                    ALOGVV("TS_BEFORE: %d %lld %lld",
                            id(), (long long)time, (long long)position);
                    auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
                    position = correctedTimestamp.mFrames;
                    time = correctedTimestamp.mTimeNs;
                    ALOGVV("TS_AFTER: %d %lld %lld",
                            id(), (long long)time, (long long)position);
                }

                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
                // Note: In general record buffers should tend to be empty in
                // a properly running pipeline.
                //
                // Also, it is not advantageous to call get_presentation_position during the read
                // as the read obtains a lock, preventing the timestamp call from executing.
            } else {
                mTimestampVerifier.error();
            }
        }

        // From the timestamp, input read latency is negative output write latency.
        const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
        const double latencyMs = IAfRecordTrack::checkServerLatencySupported(mFormat, flags)
                ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
        if (latencyMs != 0.) { // note 0. means timestamp is empty.
            mLatencyMs.add(latencyMs);
        }

        // Use this to track timestamp information
        // ALOGD("%s", mTimestamp.toString().c_str());

        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
            ALOGE("read failed: framesRead=%zd", framesRead);
            // Force input into standby so that it tries to recover at next read attempt
            inputStandBy();
            sleepUs = kRecordThreadSleepUs;
        }
        if (framesRead <= 0) {
            goto unlock;
        }
        ALOG_ASSERT(framesRead > 0);
        mFramesRead += framesRead;

#ifdef TEE_SINK
        (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
#endif
        // If destination is non-contiguous, we now correct for reading past end of buffer.
        {
            size_t part1 = mRsmpInFramesP2 - rear;
            if ((size_t) framesRead > part1) {
                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
                        (framesRead - part1) * mFrameSize);
            }
        }
        mRsmpInRear = audio_utils::safe_add_overflow(mRsmpInRear, (int32_t)framesRead);

        size = activeTracks.size();

        // loop over each active track
        // 接下来就是copy 采集音频给mActiveTracks
        for (size_t i = 0; i < size; i++) {
            if (activeTrack) {  // ensure track release is outside lock.
                oldActiveTracks.emplace_back(std::move(activeTrack));
            }
            activeTrack = activeTracks[i];

            // skip fast tracks, as those are handled directly by FastCapture
            if (activeTrack->isFastTrack()) {
                continue;
            }

            // TODO: This code probably should be moved to RecordTrack.
            // TODO: Update the activeTrack buffer converter in case of reconfigure.

            enum {
                OVERRUN_UNKNOWN,
                OVERRUN_TRUE,
                OVERRUN_FALSE
            } overrun = OVERRUN_UNKNOWN;

            // loop over getNextBuffer to handle circular sink
            for (;;) {

                activeTrack->sinkBuffer().frameCount = ~0;
                status_t status = activeTrack->getNextBuffer(&activeTrack->sinkBuffer());
                size_t framesOut = activeTrack->sinkBuffer().frameCount;
                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));

                // check available frames and handle overrun conditions
                // if the record track isn't draining fast enough.
                bool hasOverrun;
                size_t framesIn;
                activeTrack->resamplerBufferProvider()->sync(&framesIn, &hasOverrun);
                if (hasOverrun) {
                    overrun = OVERRUN_TRUE;
                }
                if (framesOut == 0 || framesIn == 0) {
                    break;
                }

                // Don't allow framesOut to be larger than what is possible with resampling
                // from framesIn.
                // This isn't strictly necessary but helps limit buffer resizing in
                // RecordBufferConverter.  TODO: remove when no longer needed.
                if (audio_is_linear_pcm(activeTrack->format())) {
                    framesOut = min(framesOut,
                            destinationFramesPossible(
                                    framesIn, mSampleRate, activeTrack->sampleRate()));
                }

                if (activeTrack->isDirect()) {
                    // No RecordBufferConverter used for direct streams. Pass
                    // straight from RecordThread buffer to RecordTrack buffer.
                    AudioBufferProvider::Buffer buffer;
                    buffer.frameCount = framesOut;
                    const status_t getNextBufferStatus =
                            activeTrack->resamplerBufferProvider()->getNextBuffer(&buffer);
                    if (getNextBufferStatus == OK && buffer.frameCount != 0) {
                        ALOGV_IF(buffer.frameCount != framesOut,
                                "%s() read less than expected (%zu vs %zu)",
                                __func__, buffer.frameCount, framesOut);
                        framesOut = buffer.frameCount;
                        memcpy(activeTrack->sinkBuffer().raw,
                                buffer.raw, buffer.frameCount * mFrameSize);
                        activeTrack->resamplerBufferProvider()->releaseBuffer(&buffer);
                    } else {
                        framesOut = 0;
                        ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
                            __func__, getNextBufferStatus, buffer.frameCount);
                    }
                } else {
                    // process frames from the RecordThread buffer provider to the RecordTrack
                    // buffer
                    framesOut = activeTrack->recordBufferConverter()->convert(
                            activeTrack->sinkBuffer().raw,
                            activeTrack->resamplerBufferProvider(),
                            framesOut);
                }

                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
                    overrun = OVERRUN_FALSE;
                }

                // MediaSyncEvent handling: Synchronize AudioRecord to AudioTrack completion.
                const ssize_t framesToDrop =
                        activeTrack->synchronizedRecordState().updateRecordFrames(framesOut);
                if (framesToDrop == 0) {
                    // no sync event, process normally, otherwise ignore.
                    if (framesOut > 0) {
                        activeTrack->sinkBuffer().frameCount = framesOut;
                        // Sanitize before releasing if the track has no access to the source data
                        // An idle UID receives silence from non virtual devices until active
                        if (activeTrack->isSilenced()) {
                            memset(activeTrack->sinkBuffer().raw,
                                    0, framesOut * activeTrack->frameSize());
                        }
                        activeTrack->releaseBuffer(&activeTrack->sinkBuffer());
                    }
                }
                if (framesOut == 0) {
                    break;
                }
            }

            switch (overrun) {
            case OVERRUN_TRUE:
                // client isn't retrieving buffers fast enough
                if (!activeTrack->setOverflow()) {
                    nsecs_t now = systemTime();
                    // FIXME should lastWarning per track?
                    if ((now - lastWarning) > kWarningThrottleNs) {
                        ALOGW("RecordThread: buffer overflow");
                        lastWarning = now;
                    }
                }
                break;
            case OVERRUN_FALSE:
                activeTrack->clearOverflow();
                break;
            case OVERRUN_UNKNOWN:
                break;
            }

            // update frame information and push timestamp out
            activeTrack->updateTrackFrameInfo(
                    activeTrack->serverProxy()->framesReleased(),
                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
                    mSampleRate, mTimestamp);
        }

unlock:
        // enable changes in effect chain
        unlockEffectChains(effectChains);
        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
        if (audio_has_proportional_frames(mFormat)
            && loopCount == lastLoopCountRead + 1) {
            const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
            const double jitterMs =
                TimestampVerifier<int64_t, int64_t>::computeJitterMs(
                    {framesRead, readPeriodNs},
                    {0, 0} /* lastTimestamp */, mSampleRate);
            const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;

            audio_utils::lock_guard _l(mutex());
            mIoJitterMs.add(jitterMs);
            mProcessTimeMs.add(processMs);
        }
       mThreadloopExecutor.process();
        // update timing info.
        mLastIoBeginNs = lastIoBeginNs;
        mLastIoEndNs = lastIoEndNs;
        lastLoopCountRead = loopCount;
    }
    mThreadloopExecutor.process(); // process any remaining deferred actions.
    // deferred actions after this point are ignored.

    standbyIfNotAlreadyInStandby();

    {
        audio_utils::lock_guard _l(mutex());
        for (size_t i = 0; i < mTracks.size(); i++) {
            sp<IAfRecordTrack> track = mTracks[i];
            track->invalidate();
        }
        mActiveTracks.clear();
        mStartStopCV.notify_all();
    }

    releaseWakeLock();

    ALOGV("RecordThread %p exiting", this);
    return false;
}

startRecording#

//frameworks/av/media/libaudioclient/AudioRecord.cpp
status_t AudioRecord::start(AudioSystem::sync_event_t event, audio_session_t triggerSession)
{
    const int64_t beginNs = systemTime();
    ALOGV("%s(%d): sync event %d trigger session %d", __func__, mPortId, event, triggerSession);
    AutoMutex lock(mLock);

    status_t status = NO_ERROR;
    mediametrics::Defer defer([&] {
        mediametrics::LogItem(mMetricsId)
            .set(AMEDIAMETRICS_PROP_CALLERNAME,
                    mCallerName.empty()
                    ? AMEDIAMETRICS_PROP_CALLERNAME_VALUE_UNKNOWN
                    : mCallerName.c_str())
            .set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_START)
            .set(AMEDIAMETRICS_PROP_EXECUTIONTIMENS, (int64_t)(systemTime() - beginNs))
            .set(AMEDIAMETRICS_PROP_STATE, stateToString(mActive))
            .set(AMEDIAMETRICS_PROP_STATUS, (int32_t)status)
            .record(); });

    if (mActive) {
        return status;
    }

    // discard data in buffer
    const uint32_t framesFlushed = mProxy->flush();
    mFramesReadServerOffset -= mFramesRead + framesFlushed;
    mFramesRead = 0;
    mProxy->clearTimestamp();  // timestamp is invalid until next server push
    mPreviousTimestamp.clear();
    mTimestampRetrogradePositionReported = false;
    mTimestampRetrogradeTimeReported = false;

    // reset current position as seen by client to 0
    mProxy->setEpoch(mProxy->getEpoch() - mProxy->getPosition());
    // force refresh of remaining frames by processAudioBuffer() as last
    // read before stop could be partial.
    mRefreshRemaining = true;

    mNewPosition = mProxy->getPosition() + mUpdatePeriod;
    int32_t flags = android_atomic_acquire_load(&mCblk->mFlags);

    // we reactivate markers (mMarkerPosition != 0) as the position is reset to 0.
    // This is legacy behavior.  This is not done in stop() to avoid a race condition
    // where the last marker event is issued twice.
    mMarkerReached = false;
    // mActive is checked by restoreRecord_l
    mActive = true;

    if (!(flags & CBLK_INVALID)) {
        status = statusTFromBinderStatus(mAudioRecord->start(event, triggerSession));
        if (status == DEAD_OBJECT) {
            flags |= CBLK_INVALID;
        }
    }
    if (flags & CBLK_INVALID) {
        status = restoreRecord_l("start");
    }

    // Call these directly because we are already holding the lock.
    mAudioRecord->setPreferredMicrophoneDirection(mSelectedMicDirection);
    mAudioRecord->setPreferredMicrophoneFieldDimension(mSelectedMicFieldDimension);

    if (status != NO_ERROR) {
        mActive = false;
        ALOGE("%s(%d): status %d", __func__, mPortId, status);
        mMediaMetrics.markError(status, __FUNCTION__);
    } else {
        mTracker->recordingStarted(); // 记录启动事件,这样可以被client感知到有应用开启采集了
        sp<AudioRecordThread> t = mAudioRecordThread; // 驱动采集回调线程
        if (t != 0) {
            t->resume();
        } else {
            mPreviousPriority = getpriority(PRIO_PROCESS, 0);
            get_sched_policy(0, &mPreviousSchedulingGroup);
            androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
        }

        // we've successfully started, log that time
        mMediaMetrics.logStart(systemTime());
    }
    return status;
}
//frameworks/av/media/libaudioclient/AudioRecord.cpp
bool AudioRecord::AudioRecordThread::threadLoop()
{
    {
        AutoMutex _l(mMyLock);
        if (mPaused) {
            // TODO check return value and handle or log
            mMyCond.wait(mMyLock);
            // caller will check for exitPending()
            return true;
        }
        if (mIgnoreNextPausedInt) {
            mIgnoreNextPausedInt = false;
            mPausedInt = false;
        }
        if (mPausedInt) {
            if (mPausedNs > 0) {
                // TODO check return value and handle or log
                (void) mMyCond.waitRelative(mMyLock, mPausedNs);
            } else {
                // TODO check return value and handle or log
                mMyCond.wait(mMyLock);
            }
            mPausedInt = false;
            return true;
        }
    }
    if (exitPending()) {
        return false;
    }
    nsecs_t ns =  mReceiver.processAudioBuffer();
    switch (ns) {
    case 0:
        return true;
    case NS_INACTIVE:
        pauseInternal();
        return true;
    case NS_NEVER:
        return false;
    case NS_WHENEVER:
        // Event driven: call wake() when callback notifications conditions change.
        ns = INT64_MAX;
        FALLTHROUGH_INTENDED;
    default:
        LOG_ALWAYS_FATAL_IF(ns < 0, "%s() returned %lld", __func__, (long long)ns);
        pauseInternal(ns);
        return true;
    }
}
nsecs_t AudioRecord::processAudioBuffer()
{
    mLock.lock();
    const sp<IAudioRecordCallback> callback = mCallback.promote();
    if (!callback) {
        mCallback = nullptr;
        mLock.unlock();
        return NS_NEVER;
    }
    if (mAwaitBoost) {
        mAwaitBoost = false;
        mLock.unlock();
        static const int32_t kMaxTries = 5;
        int32_t tryCounter = kMaxTries;
        uint32_t pollUs = 10000;
        do {
            int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
            if (policy == SCHED_FIFO || policy == SCHED_RR) {
                break;
            }
            usleep(pollUs);
            pollUs <<= 1;
        } while (tryCounter-- > 0);
        if (tryCounter < 0) {
            ALOGE("%s(%d): did not receive expected priority boost on time", __func__, mPortId);
        }
        // Run again immediately
        return 0;
    }

    // Can only reference mCblk while locked
    int32_t flags = android_atomic_and(~CBLK_OVERRUN, &mCblk->mFlags);

    // Check for track invalidation
    if (flags & CBLK_INVALID) {
        (void) restoreRecord_l("processAudioBuffer");
        mLock.unlock();
        // Run again immediately, but with a new IAudioRecord
        return 0;
    }

    bool active = mActive;

    // Manage overrun callback, must be done under lock to avoid race with releaseBuffer()
    bool newOverrun = false;
    if (flags & CBLK_OVERRUN) {
        if (!mInOverrun) {
            mInOverrun = true;
            newOverrun = true;
        }
    }

    // Get current position of server
    Modulo<uint32_t> position(mProxy->getPosition());

    // Manage marker callback
    bool markerReached = false;
    Modulo<uint32_t> markerPosition(mMarkerPosition);
    // FIXME fails for wraparound, need 64 bits
    if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
        mMarkerReached = markerReached = true;
    }

    // Determine the number of new position callback(s) that will be needed, while locked
    size_t newPosCount = 0;
    Modulo<uint32_t> newPosition(mNewPosition);
    uint32_t updatePeriod = mUpdatePeriod;
    // FIXME fails for wraparound, need 64 bits
    if (updatePeriod > 0 && position >= newPosition) {
        newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
        mNewPosition += updatePeriod * newPosCount;
    }

    // Cache other fields that will be needed soon
    uint32_t notificationFrames = mNotificationFramesAct;
    if (mRefreshRemaining) {
        mRefreshRemaining = false;
        mRemainingFrames = notificationFrames;
        mRetryOnPartialBuffer = false;
    }
    size_t misalignment = mProxy->getMisalignment();
    uint32_t sequence = mSequence;

    // These fields don't need to be cached, because they are assigned only by set():
    //      mTransfer, mCallback, mUserData, mSampleRate, mFrameSize

    mLock.unlock();

    // perform callbacks while unlocked
    if (newOverrun) {
        callback->onOverrun();

    }
    if (markerReached) {
        callback->onMarker(markerPosition.value());
    }
    while (newPosCount > 0) {
        callback->onNewPos(newPosition.value());
        newPosition += updatePeriod;
        newPosCount--;
    }
    if (mObservedSequence != sequence) {
        mObservedSequence = sequence;
        callback->onNewIAudioRecord();
    }

    // if inactive, then don't run me again until re-started
    if (!active) {
        return NS_INACTIVE;
    }

    // Compute the estimated time until the next timed event (position, markers)
    uint32_t minFrames = ~0;
    if (!markerReached && position < markerPosition) {
        minFrames = (markerPosition - position).value();
    }
    if (updatePeriod > 0) {
        uint32_t remaining = (newPosition - position).value();
        if (remaining < minFrames) {
            minFrames = remaining;
        }
    }

    // If > 0, poll periodically to recover from a stuck server.  A good value is 2.
    static const uint32_t kPoll = 0;
    if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
        minFrames = kPoll * notificationFrames;
    }

    // Convert frame units to time units
    nsecs_t ns = NS_WHENEVER;
    if (minFrames != (uint32_t) ~0) {
        // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
        static const nsecs_t kFudgeNs = 10000000LL; // 10 ms
        ns = ((minFrames * 1000000000LL) / mSampleRate) + kFudgeNs;
    }

    // If not supplying data by EVENT_MORE_DATA, then we're done
    if (mTransfer != TRANSFER_CALLBACK) {
        return ns;
    }

    struct timespec timeout;
    const struct timespec *requested = &ClientProxy::kForever;
    if (ns != NS_WHENEVER) {
        timeout.tv_sec = ns / 1000000000LL;
        timeout.tv_nsec = ns % 1000000000LL;
        ALOGV("%s(%d): timeout %ld.%03d",
                __func__, mPortId, timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
        requested = &timeout;
    }

    size_t readFrames = 0;
    while (mRemainingFrames > 0) {

        Buffer audioBuffer;
        audioBuffer.frameCount = mRemainingFrames;
        size_t nonContig;
        status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig); // 获取采集数据
        LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
                "%s(%d): obtainBuffer() err=%d frameCount=%zu",
                __func__, mPortId, err, audioBuffer.frameCount);
        requested = &ClientProxy::kNonBlocking;
        size_t avail = audioBuffer.frameCount + nonContig;
        ALOGV("%s(%d): obtainBuffer(%u) returned %zu = %zu + %zu err %d",
                __func__, mPortId, mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
        if (err != NO_ERROR) {
            if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR) {
                break;
            }
            ALOGE("%s(%d): Error %d obtaining an audio buffer, giving up.",
                    __func__, mPortId, err);
            return NS_NEVER;
        }

        if (mRetryOnPartialBuffer) {
            mRetryOnPartialBuffer = false;
            if (avail < mRemainingFrames) {
                int64_t myns = ((mRemainingFrames - avail) *
                        1100000000LL) / mSampleRate;
                if (ns < 0 || myns < ns) {
                    ns = myns;
                }
                return ns;
            }
        }

        Buffer* buffer = &audioBuffer;
        if (mServerConfig.format != mFormat) {
            buffer = &mFormatConversionBuffer;
            buffer->frameCount = audioBuffer.frameCount;
            buffer->mSize = buffer->frameCount * mFrameSize;
            buffer->sequence = audioBuffer.sequence;
            memcpy_by_audio_format(buffer->raw, mFormat, audioBuffer.raw,
                                   mServerConfig.format, audioBuffer.size() / mServerSampleSize);
        }

        const size_t reqSize = buffer->size();
        const size_t readSize = callback->onMoreData(*buffer);
        buffer->mSize = readSize;

        // Validate on returned size
        if (ssize_t(readSize) < 0 || readSize > reqSize) {
            ALOGE("%s(%d):  EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
                    __func__, mPortId, reqSize, ssize_t(readSize));
            return NS_NEVER;
        }

        if (readSize == 0) {
            // The callback is done consuming buffers
            // Keep this thread going to handle timed events and
            // still try to provide more data in intervals of WAIT_PERIOD_MS
            // but don't just loop and block the CPU, so wait
            return WAIT_PERIOD_MS * 1000000LL;
        }

        size_t releasedFrames = readSize / mFrameSize;
        audioBuffer.frameCount = releasedFrames;
        mRemainingFrames -= releasedFrames;
        if (misalignment >= releasedFrames) {
            misalignment -= releasedFrames;
        } else {
            misalignment = 0;
        }

        releaseBuffer(&audioBuffer);
        readFrames += releasedFrames;

        // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
        // if callback doesn't like to accept the full chunk
        if (readSize < reqSize) {
            continue;
        }

        // There could be enough non-contiguous frames available to satisfy the remaining request
        if (mRemainingFrames <= nonContig) {
            continue;
        }

#if 0
        // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
        // sum <= notificationFrames.  It replaces that series by at most two EVENT_MORE_DATA
        // that total to a sum == notificationFrames.
        if (0 < misalignment && misalignment <= mRemainingFrames) {
            mRemainingFrames = misalignment;
            return (mRemainingFrames * 1100000000LL) / mSampleRate;
        }
#endif

    }
    if (readFrames > 0) {
        AutoMutex lock(mLock);
        mFramesRead += readFrames;
        // mFramesReadTime = systemTime(SYSTEM_TIME_MONOTONIC); // not provided at this time.
    }
    mRemainingFrames = notificationFrames;
    mRetryOnPartialBuffer = true;

    // A lot has transpired since ns was calculated, so run again immediately and re-calculate
    return 0;
}
// frameworks/av/services/audioflinger/Threads.cpp
status_t RecordThread::start(IAfRecordTrack* recordTrack,
                                           AudioSystem::sync_event_t event,
                                           audio_session_t triggerSession)
{
    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
    sp<ThreadBase> strongMe = this;
    status_t status = NO_ERROR;

    if (event == AudioSystem::SYNC_EVENT_NONE) {
        recordTrack->clearSyncStartEvent();
    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
        recordTrack->synchronizedRecordState().startRecording(
                mAfThreadCallback->createSyncEvent(
                        event, triggerSession,
                        recordTrack->sessionId(), syncStartEventCallback, recordTrack));
    }

    {
        // This section is a rendezvous between binder thread executing start() and RecordThread
         audio_utils::lock_guard lock(mutex());
        if (recordTrack->isInvalid()) {
            recordTrack->clearSyncStartEvent();
            ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId());
            return DEAD_OBJECT;
        }
        // 修改recordTrack的状态
        if (mActiveTracks.indexOf(recordTrack) >= 0) {
            if (recordTrack->state() == IAfTrackBase::PAUSING) {
                // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
                // so no need to startInput().
                ALOGV("active record track PAUSING -> ACTIVE");
                recordTrack->setState(IAfTrackBase::ACTIVE);
            } else {
                ALOGV("active record track state %d", (int)recordTrack->state());
            }
            return status;
        }

        // TODO consider other ways of handling this, such as changing the state to :STARTING and
        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
        //      or using a separate command thread
        recordTrack->setState(IAfTrackBase::STARTING_1);
        mActiveTracks.add(recordTrack); // 加入mActiveTracks列表,这样在ThreadLoop中采集到数据就会拷贝给recordTrack
        if (recordTrack->isExternalTrack()) {
            mutex().unlock();
            status = AudioSystem::startInput(recordTrack->portId());
            mutex().lock();
            if (recordTrack->isInvalid()) {
                recordTrack->clearSyncStartEvent();
                if (status == NO_ERROR && recordTrack->state() == IAfTrackBase::STARTING_1) {
                    recordTrack->setState(IAfTrackBase::STARTING_2);
                    // STARTING_2 forces destroy to call stopInput.
                }
                ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId());
                return DEAD_OBJECT;
            }
            if (recordTrack->state() != IAfTrackBase::STARTING_1) {
                ALOGW("%s(%d): unsynchronized mState:%d change",
                    __func__, recordTrack->id(), (int)recordTrack->state());
                // Someone else has changed state, let them take over,
                // leave mState in the new state.
                recordTrack->clearSyncStartEvent();
                return INVALID_OPERATION;
            }
            // we're ok, but perhaps startInput has failed
            if (status != NO_ERROR) {
                ALOGW("%s(%d): startInput failed, status %d",
                    __func__, recordTrack->id(), status);
                // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
                // leave in STARTING_1, so destroy() will not call stopInput.
                mActiveTracks.remove(recordTrack);
                recordTrack->clearSyncStartEvent();
                return status;
            }
            sendIoConfigEvent_l(
                AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
        }

        recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics

        // Catch up with current buffer indices if thread is already running.
        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
        // see previously buffered data before it called start(), but with greater risk of overrun.

        recordTrack->resamplerBufferProvider()->reset();
        if (!recordTrack->isDirect()) {
            // clear any converter state as new data will be discontinuous
            recordTrack->recordBufferConverter()->reset();
        }
        recordTrack->setState(IAfTrackBase::STARTING_2);
        // signal thread to start
        mWaitWorkCV.notify_all();
        return status;
    }
}

read#

// frameworks/av/media/libaudioclient/AudioRecord.cpp
ssize_t AudioRecord::read(void* buffer, size_t userSize, bool blocking)
{
    if (mTransfer != TRANSFER_SYNC) {
        return INVALID_OPERATION;
    }

    if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
        // Validation. user is most-likely passing an error code, and it would
        // make the return value ambiguous (actualSize vs error).
        ALOGE("%s(%d) (buffer=%p, size=%zu (%zu)",
                __func__, mPortId, buffer, userSize, userSize);
        return BAD_VALUE;
    }

    ssize_t read = 0;
    Buffer audioBuffer;

    while (userSize >= mFrameSize) {
        audioBuffer.frameCount = userSize / mFrameSize;

        status_t err = obtainBuffer(&audioBuffer,
                blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking); //获取共享内存数据
            if (read > 0) {
                break;
            }
            if (err == TIMED_OUT || err == -EINTR) {
                err = WOULD_BLOCK;
            }
            return ssize_t(err);
        }

        size_t bytesRead = audioBuffer.frameCount * mFrameSize;
        if (audio_is_linear_pcm(mFormat)) {
            memcpy_by_audio_format(buffer, mFormat, audioBuffer.raw, mServerConfig.format,
                                audioBuffer.mSize / mServerSampleSize);
        } else {
            memcpy(buffer, audioBuffer.raw, audioBuffer.mSize);
        }
        buffer = ((char *) buffer) + bytesRead;
        userSize -= bytesRead;
        read += bytesRead;

        releaseBuffer(&audioBuffer);
    }
    if (read > 0) {
        mFramesRead += read / mFrameSize;
        // mFramesReadTime = systemTime(SYSTEM_TIME_MONOTONIC); // not provided at this time.
    }
    return read;
}
status_t AudioRecord::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
        struct timespec *elapsed, size_t *nonContig)
{
    // previous and new IAudioRecord sequence numbers are used to detect track re-creation
    uint32_t oldSequence = 0;

    Proxy::Buffer buffer;
    status_t status = NO_ERROR;

    static const int32_t kMaxTries = 5;
    int32_t tryCounter = kMaxTries;

    do {
        // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
        // keep them from going away if another thread re-creates the track during obtainBuffer()
        sp<AudioRecordClientProxy> proxy;
        sp<IMemory> iMem;
        sp<IMemory> bufferMem;
        {
            // start of lock scope
            AutoMutex lock(mLock);

            uint32_t newSequence = mSequence;
            // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
            if (status == DEAD_OBJECT) {
                // re-create track, unless someone else has already done so
                if (newSequence == oldSequence) {
                    if (!audio_is_linear_pcm(mFormat)) {
                        // If compressed capture, don't attempt to restore the track.
                        // Return a DEAD_OBJECT error and let the caller recreate.
                        tryCounter = 0;
                    } else {
                        status = restoreRecord_l("obtainBuffer");
                    }
                    if (status != NO_ERROR) {
                        buffer.mFrameCount = 0;
                        buffer.mRaw = NULL;
                        buffer.mNonContig = 0;
                        break;
                    }
                }
            }
            oldSequence = newSequence;

            // Keep the extra references
            proxy = mProxy;
            iMem = mCblkMemory;
            bufferMem = mBufferMemory;

            // Non-blocking if track is stopped
            if (!mActive) {
                requested = &ClientProxy::kNonBlocking;
            }

        }   // end of lock scope

        buffer.mFrameCount = audioBuffer->frameCount;
        // FIXME starts the requested timeout and elapsed over from scratch
        status = proxy->obtainBuffer(&buffer, requested, elapsed);

    } while ((status == DEAD_OBJECT) && (tryCounter-- > 0));

    audioBuffer->frameCount = buffer.mFrameCount;
    audioBuffer->mSize = buffer.mFrameCount * mServerFrameSize;
    audioBuffer->raw = buffer.mRaw;
    audioBuffer->sequence = oldSequence;
    if (nonContig != NULL) {
        *nonContig = buffer.mNonContig;
    }
    return status;
}
// frameworks/av/media/libaudioclient/AudioTrackShared.cpp
status_t ClientProxy::obtainBuffer(Buffer* buffer, const struct timespec *requested,
        struct timespec *elapsed)
{
    LOG_ALWAYS_FATAL_IF(buffer == NULL || buffer->mFrameCount == 0,
            "%s: null or zero frame buffer, buffer:%p", __func__, buffer);
    struct timespec total;          // total elapsed time spent waiting
    total.tv_sec = 0;
    total.tv_nsec = 0;
    bool measure = elapsed != NULL; // whether to measure total elapsed time spent waiting

    status_t status;
    enum {
        TIMEOUT_ZERO,       // requested == NULL || *requested == 0
        TIMEOUT_INFINITE,   // *requested == infinity
        TIMEOUT_FINITE,     // 0 < *requested < infinity
        TIMEOUT_CONTINUE,   // additional chances after TIMEOUT_FINITE
    } timeout;
    if (requested == NULL) {
        timeout = TIMEOUT_ZERO;
    } else if (requested->tv_sec == 0 && requested->tv_nsec == 0) {
        timeout = TIMEOUT_ZERO;
    } else if (requested->tv_sec == INT_MAX) {
        timeout = TIMEOUT_INFINITE;
    } else {
        timeout = TIMEOUT_FINITE;
        if (requested->tv_sec > 0 || requested->tv_nsec >= MEASURE_NS) {
            measure = true;
        }
    }
    struct timespec before;
    bool beforeIsValid = false;
    audio_track_cblk_t* cblk = mCblk;
    bool ignoreInitialPendingInterrupt = true;
    // check for shared memory corruption
    if (mIsShutdown) {
        status = NO_INIT;
        goto end;
    }
    for (;;) {
        int32_t flags = android_atomic_and(~CBLK_INTERRUPT, &cblk->mFlags);
        // check for track invalidation by server, or server death detection
        if (flags & CBLK_INVALID) {
            ALOGV("Track invalidated");
            status = DEAD_OBJECT;
            goto end;
        }
        if (flags & CBLK_DISABLED) {
            ALOGV("Track disabled");
            status = NOT_ENOUGH_DATA;
            goto end;
        }
        // check for obtainBuffer interrupted by client
        if (!ignoreInitialPendingInterrupt && (flags & CBLK_INTERRUPT)) {
            ALOGV("obtainBuffer() interrupted by client");
            status = -EINTR;
            goto end;
        }
        ignoreInitialPendingInterrupt = false;
        // compute number of frames available to write (AudioTrack) or read (AudioRecord)
        int32_t front; // 环形buffer 头
        int32_t rear; // 环形buffer 尾
        if (mIsOut) {
            // The barrier following the read of mFront is probably redundant.
            // We're about to perform a conditional branch based on 'filled',
            // which will force the processor to observe the read of mFront
            // prior to allowing data writes starting at mRaw.
            // However, the processor may support speculative execution,
            // and be unable to undo speculative writes into shared memory.
            // The barrier will prevent such speculative execution.
            front = android_atomic_acquire_load(&cblk->u.mStreaming.mFront);
            rear = cblk->u.mStreaming.mRear;
        } else {
            // On the other hand, this barrier is required.
            rear = android_atomic_acquire_load(&cblk->u.mStreaming.mRear);
            front = cblk->u.mStreaming.mFront;
        }
        // write to rear, read from front
        ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
        // pipe should not be overfull
        if (!(0 <= filled && (size_t) filled <= mFrameCount)) {
            if (mIsOut) {
                ALOGE("Shared memory control block is corrupt (filled=%zd, mFrameCount=%zu); "
                        "shutting down", filled, mFrameCount);
                mIsShutdown = true;
                status = NO_INIT;
                goto end;
            }
            // for input, sync up on overrun
            filled = 0;
            cblk->u.mStreaming.mFront = rear;
            (void) android_atomic_or(CBLK_OVERRUN, &cblk->mFlags);
        }
        // Don't allow filling pipe beyond the user settable size.
        // The calculation for avail can go negative if the buffer size
        // is suddenly dropped below the amount already in the buffer.
        // So use a signed calculation to prevent a numeric overflow abort.
        ssize_t adjustableSize = (ssize_t) getBufferSizeInFrames();
        ssize_t avail =  (mIsOut) ? adjustableSize - filled : filled;
        if (avail < 0) {
            avail = 0;
        } else if (avail > 0) {
            // 'avail' may be non-contiguous, so return only the first contiguous chunk
            size_t part1;
            if (mIsOut) {
                rear &= mFrameCountP2 - 1;
                part1 = mFrameCountP2 - rear;
            } else {
                front &= mFrameCountP2 - 1;
                part1 = mFrameCountP2 - front;
            }
            if (part1 > (size_t)avail) {
                part1 = avail;
            }
            if (part1 > buffer->mFrameCount) {
                part1 = buffer->mFrameCount;
            }
            buffer->mFrameCount = part1;
            buffer->mRaw = part1 > 0 ?
                    &((char *) mBuffers)[(mIsOut ? rear : front) * mFrameSize] : NULL; // 修改地址,这样就不用拷贝了
            buffer->mNonContig = avail - part1;
            mUnreleased = part1;
            status = NO_ERROR;
            break;
        }
        struct timespec remaining;
        const struct timespec *ts;
        switch (timeout) {
        case TIMEOUT_ZERO:
            status = WOULD_BLOCK;
            goto end;
        case TIMEOUT_INFINITE:
            ts = NULL;
            break;
        case TIMEOUT_FINITE:
            timeout = TIMEOUT_CONTINUE;
            if (MAX_SEC == 0) {
                ts = requested;
                break;
            }
            FALLTHROUGH_INTENDED;
        case TIMEOUT_CONTINUE:
            // FIXME we do not retry if requested < 10ms? needs documentation on this state machine
            if (!measure || requested->tv_sec < total.tv_sec ||
                    (requested->tv_sec == total.tv_sec && requested->tv_nsec <= total.tv_nsec)) {
                status = TIMED_OUT;
                goto end;
            }
            remaining.tv_sec = requested->tv_sec - total.tv_sec;
            if ((remaining.tv_nsec = requested->tv_nsec - total.tv_nsec) < 0) {
                remaining.tv_nsec += 1000000000;
                remaining.tv_sec++;
            }
            if (0 < MAX_SEC && MAX_SEC < remaining.tv_sec) {
                remaining.tv_sec = MAX_SEC;
                remaining.tv_nsec = 0;
            }
            ts = &remaining;
            break;
        default:
            LOG_ALWAYS_FATAL("obtainBuffer() timeout=%d", timeout);
            ts = NULL;
            break;
        }
        int32_t old = android_atomic_and(~CBLK_FUTEX_WAKE, &cblk->mFutex);
        if (!(old & CBLK_FUTEX_WAKE)) {
            if (measure && !beforeIsValid) {
                clock_gettime(CLOCK_MONOTONIC, &before);
                beforeIsValid = true;
            }
            errno = 0;
            (void) syscall(__NR_futex, &cblk->mFutex,
                    mClientInServer ? FUTEX_WAIT_PRIVATE : FUTEX_WAIT, old & ~CBLK_FUTEX_WAKE, ts);
            status_t error = errno; // clock_gettime can affect errno
            // update total elapsed time spent waiting
            if (measure) {
                struct timespec after;
                clock_gettime(CLOCK_MONOTONIC, &after);
                total.tv_sec += after.tv_sec - before.tv_sec;
                // Use auto instead of long to avoid the google-runtime-int warning.
                auto deltaNs = after.tv_nsec - before.tv_nsec;
                if (deltaNs < 0) {
                    deltaNs += 1000000000;
                    total.tv_sec--;
                }
                if ((total.tv_nsec += deltaNs) >= 1000000000) {
                    total.tv_nsec -= 1000000000;
                    total.tv_sec++;
                }
                before = after;
                beforeIsValid = true;
            }
            switch (error) {
            case 0:            // normal wakeup by server, or by binderDied()
            case EWOULDBLOCK:  // benign race condition with server
            case EINTR:        // wait was interrupted by signal or other spurious wakeup
            case ETIMEDOUT:    // time-out expired
                // FIXME these error/non-0 status are being dropped
                break;
            default:
                status = error;
                ALOGE("%s unexpected error %s", __func__, strerror(status));
                goto end;
            }
        }
    }

end:
    if (status != NO_ERROR) {
        buffer->mFrameCount = 0;
        buffer->mRaw = NULL;
        buffer->mNonContig = 0;
        mUnreleased = 0;
    }
    if (elapsed != NULL) {
        *elapsed = total;
    }
    if (requested == NULL) {
        requested = &kNonBlocking;
    }
    if (measure) {
        ALOGV("requested %ld.%03ld elapsed %ld.%03ld",
              requested->tv_sec, requested->tv_nsec / 1000000,
              total.tv_sec, total.tv_nsec / 1000000);
    }
    return status;
}

本质上就是共享了一块内存,这块内存有两部分,一部分记录内存使用信息,比如环形 buffer 头和尾的位置等,一部分记录真正的数据,由于这块内存都是共享的,所以环形 buffer 使用情况信息也是共享的,这样就可以直接操作了。

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。